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In this paper we shall give mathematical foundations of the simultaneous measure- 
ments in quantum mechanics. Next we shall show the existence theorem of the simultaneous 
measurement for arbitrary observables. Furthermore, we deduce Heisenberg’s uncertainty 
relation and approximate simultaneous uncertainty relation for a pair of arbitrary 
observables. 

1. Introduction 

Although the uncertainty relation (discovered by Heisenberg in 1927) has a long 
history, the various discussions about its interpretations are continued even now. 
Mainly, there are two interpretations of uncertainty relations. One is the statistical 
interpretation. By repeating the exact (i.e. the “error” A(q) = 0) measurements of the 
position q of particles with same states, we can obtain its average value Lj and its 
variance var(q). Also, by repeating the exact (i.e. the “error” A(p) = 0) measurements 
of the momentum p of the same particles, we can similarly get its average value p and 
its variance var(p). From the simple mathematical deduction, we can easily obtain 
the following uncertainty relation: 

[var(q)]“2. [var(p)]“’ > t, (1) 

where A = “Plank’s constant”/2z This is the statistical aspect of the uncertainty 
relation. 

On the other hand, Heisenberg’s uncertainty relation is rather individualistic. 
Most physicists will agree that the content of Heisenberg’s uncertainty relation is 
roughly as stated in the following proposition (though it includes some ambiguous 
sentences as well as some ambiguous words, i.e. “simultaneous” and “error”). 

PROPOSITION 1 (Heisenberg’s uncertainty relation). (i) The particle position q and 
momentum p can be measured “simultaneously”, if the “errors” A(q) and A(p) in 
determining the particle position and momentum are permitted to be non-zero. 

c2571 



258 S. ISHIKAWA 

(ii) Moreover, for any E > 0, we can take the “simultaneous” measurement of the 
position q and momentum p such that A(q) < E (or A(p) < E). 

(iii) However, the following Heisenberg’s uncertainty relation holds: 

(2) 

for all “simultaneous” measurements of the particle position and momentum. 

Several authors have contributed to the problem of deducing Heisenberg’s 
uncertainty relation. In 523 (Ali and Emach, 1974), [3] (Ali and Prugovecki, 1977) 
and [6] (Busch, 1984), these were done by means of the concept of modified 
observable which has been developed by Davies and Lewis (1970) [9]. Hence, 
a certain part of this problem has been already solved. In particular, the statements 
(i) and (ii) in the above Proposition 1 were deduced in a satisfactory way. However, 
with regard to the statement (iii), it seems there are still some questions. In order to 
deduce the statement (iii) it is necessary to clarify the class of all “simultaneous” 
measurements. However, this argument seems not to be sufficient. In this paper we 
shall make a proposal for the mathematical foundations for the “simultaneous” 
measurement and the “error” mentioned in Proposition 1. And we shall show the 
existence theorem of the simultaneous measurement for arbitrary observables 
A 1, . . ., A,, which corresponds to the statements (i) and (ii) in Proposition 1 in 
the case when (A,, AJ is a pair of conjugate observables (i.e. symbolically, 
A, A, -A,A, = ih). Furthermore, we shall derive the Heisenberg’s uncertainty 
relation (2) and the so-called approximate simultaneous uncertainty relation (which 
has been discovered in [S] and discussed in [21], [22]) for a pair of arbitrary 
observables as well as that of conjugate observables. 

2. Definitions 

Since the main purpose of this paper is to prove Proposition 1 (or the generalized 
theorem), we must clarify the ambiguous words in Proposition 1. For this, we 
prepare several definitions in this section. 

DEFINITION 1 (Davies and Lewis [9]). Let Q be a set with a o-field 9 and let H be 
a Hilbert space. A positive operator valued measure E on 0 in H is defined to be 
a map E: 9 -*B(H) = (L : L is a bounded linear operator on H} such that 

(i) 0 = E(4) < E(G) < E(O) = I for all GEM, where 0 and I are respectively 
a O-operator and an identity operator on H, 

(ii) for any countable decomposition {Gj)j”,, of G, (Gj, GEY), E(G) = 2p 1 
E(Gj) holds, where the series is weakly convergent. 

Furthermore, a positive operator valued measure E on s2 is called a projection 
valued measure, if it satisfies the following additional requirement: 
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(iii) 

E(G,)E(G,) = 0 (G, n G, = 4). 

A positive operator valued measure and a projection valued measure are also called 
an observable and a standard observable, respectively. 

In this paper, a positive operator valued measure (or projection valued measure) 
E on an n-dimensional Euclidean space R” with a Bore1 field 98” = (G: G is a Bore1 
set in R”} is usually called an observable (or standard observable) on R”. 

According to the well-known spectral representation theorem, there is a bijective 
correspondence of a standard observable E on R” in H to an n-tuple (E,, . . ., E,) of 

commutative self-adjoint operators in H such that Ei = s jVi E(dA, , . . d&J. So we 

sometimes identify E with (E,, . . ., E,) and we can writeR” 

E = (E,, . . . . E,) = ( j Izi E(dIJ);= 1 = j LE(di). 
R” R” 

In particular, we frequently identify a standard observable on R 
a self-adjoint operacur in H. 

DEFINITION 2. Let H be a Hilbert space with the inner product -. 

(3) 

in H with 

c.9 .)H. 
(1) A quartet M = (K, s, (52, 9, A)), f = (f,, . . .,f,)) is called a measurement in H, 

if it satisfies the following conditions (i), (ii) and (iii): 
(i) K is a Hilbert space and s is an element in K such that l/sll = 1, 

(ii) A” is a projection valued measure on 52 with a o-field F in the tensor Hilbert 
space H OK with the inner product (., .)HoK and 

(iii) f : D + R” is a measurable map from Sz into R”, i.e. J: Q -+ R, (i = 1, . . . , n), is 
a measurable function on Q. 

In particular, when K = C (so, H @ C = H, where C is the complex field), M is 
called a simple measurement. 

(2) A measurement M = (K, s, (s2, 8, A”)), f = (fi, . . .,f,)) is called the measure- 
ment of an observable A on R”, if 

(u@s, A”(f-‘(G))(uOs)),,, = (u, J(G)+, (~EH, Geg,J. (4) 

The measurement M of 2 is also called the realization of the measurement of A 
(cf. [ 131). 

The relation between measurements and observables is characterized by the 
following proposition. 

PROPOSITION 2. (i) For any measurement M = (K, s, (52, 9, A”),f = (fi, . . .,fn)), 
there exists a unique observable ?i on R” such that M is the measurement of A. Also, 
A is determined by (4). 
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(ii) For any observable A on R” in a Hilbert space H, there exists a measurement 

M = (K, s, (Q, % &f= (f-1, . . ..f.)) of A. 

Proof: The statement (i) is trivial. Also the statement (ii) immediately follows 
from the following proposition. 

PROPOSITION 3 (Holevo [12]). Let ,!7 be a positive operator valued measure on 
!2 with a a-field % in a Hilbert space H. Then, there exist a Hilbert space K, an 
element s ( llsllK = 1) in K and a projection valued measure I? on 0 in the tensor Hilbert 
space H @ K satisfying 

(u@s, E”(G)(uOs)) narc = (u, E(G)u)n (uEH, GE%). (5) 

Conversely, any projection valued measure I!? on Q in H @ K and s E K give rise to the 
unique positive operator valued measure .!? on Q in H satisfying (5). 

Now we postulate the following probabilistic interpretation of quantum mech- 
anics: when we take the measurement M = (K, s, (0, %, x), f = (f, , . . ., f,)) of an 
observable A on R” (also, we say briefly, “measurement M” or “measurement of an 
observable J”) for a system with a state u (UE H, llulln = l), the probability that the 
value 1 (ER”) obtained in the measurement M belongs to a set G (E&Q is given by 

<u, x(G)u), (= (UC+, A”(f-YG))(uOs)),,,). 

Therefore, the expectation Exp [M, u] (= (Exp[M, U]i)l= 1) of the measurement M of 
the observable A on R” for the state u ( llullH = 1) is given by 

Exp[M, uli = J ii (u, A(dl) u)n 
R” 

(= ~_&(4<u@s, &W(uOs)hK), i = 1, 2, . . . . n 

and its variance var[M, u] (= (var [M, uli)l= 1) is given by 

var[M, uli = j I&-Exp[M, u]J’(u, A(dl)u), 
R” 

(= L Ifi(~)-Exp[M, uli12 (U 0 S, J(dm) (U 0 s))H~K), i = 1, 2, 

where var[M, uli is defined by co if j &I2 (u, A(di)u), = co. 

(6) 

in 

We shall use the following notatio:: 

NOTATION 1. (1) Let M = (K, s, (Q, %, A”)), f = (fi, . . ., f,)) be a measurement 
H. Then 

ai:= ~f;(w)A”(do), A:= (a,, . . . . a,,) = (l /Ii&dA));=l. 
R R” 
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(2) Let L and f, be observables on R in H and HO K, respectively. Let s E H. 
Then 

D(L):= @H: j1112(u, L(l)u) < CO}, 
R 

D(t):= (coEHQK: j,1,2;w, L(d;l)w>nsK < oo}, 
R 

D,(i):= {udf: j~1~2(uos, e(dn)(uoS))~@~ < co], 

R 

where D(L) (or D(i)) is called the domain of L (or i). 
(3) Let A be an observable on R” in a Hilbert space H. Then 

Amartk)(G) : = A({x = (x1, . . ., xk, . . ., x,) E R”: xk E G}) 

(GEB~, k = 1, 2, . . . . n). 

Amarfk) is called the (k-th) marginal observable of A. 

Note that a(G) = A”(f-r(G)) (GEM’,) and II, = D(Amarti)) (i = 1, . .., n) hold. 
Presently, we shall give the definition of “simultaneous” measurements (Defini- 

tions 3 and 4). 

DEFINITION 3. Let A 1, . . . , A, be standard observables on R in a Hilbert space H. 
Then an observable A on R” such that Ai = Amar@) (i = 1, . . ., n) is called the 
observable representing A,, . . ., A, in the exact sense. Also the measurement 

M = (K s, (Q R &),f(o) = (fi(ckMc& . . . . f,(o)) of the observable A representing 
A 1, . . ., A,, in the exact sense is called the exact simultaneous measurement of 

A that is, M satisfies that (u@s, A”(f;:-‘(G))(u@s)),,, = (u, A,(G)u), 
$‘;H,‘Gib,, i = 1, . . . . n). 

We see by the following Proposition 4 that A,, . . ., A, commute if and only if 
there exists an exact simultaneous measurement of A,, . . ., A,. 

PROPOSITION 4. Let A,, . . . , A,, be standard observables on R in a Hilbert space H. 
Then, the following statements (i) and (ii) hold: 

(9 If A,, . . . . A,, commute, i.e. 

Ai Aj(GJ = Aj(GJ Ai (i # j, G, 7 G2 E al), 

then the standard observable A = (A,, . . ., A,) on R” defined by (3) satisfies Ai = Amarci) 
(i = 1, . . . . n). 

(ii) 2” there exists an observable A on R” such that Ai = Amarci) (i = 1, . . ., n), then 
A 1 ,..., A,commute(sowecanputA=(A, ,..., A,)as(3))andA=A(=(A, ,..., A,,)). 

Proof: The statement (i) is trivial. Also about (ii), see [8]. 

Now we have the following main definition. 
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DEFINITION 4. Let A 1, . . . , A, be standard observables on R in a Hilbert space H. 
(1) An observable A on R” in H is called the observable representing A,, . . ., A, in 

the average sense, if it satisfies the following conditions: 
(i) (domain condition) for each i D(Amarci)), the domain of Amarti), is the core of 

the self-adjoint operator Ai (= JiAi(dlj) (i = 1, 2, . . ., n), i.e. Ai is an essentially 

self-adjoint operator on O(A”“‘C$ (C D(&)), 
(ii) (average value condition) 

(U, AiU) = J l.(U, A”“““(d1.) U) (t1 E D(,Jmar(i)), i = 1, 2, . . ., n). (8) 
R 

(2) A measurement M = (K, s, (52, R A”),f(o) = (f,(o),fi(co), . . .,~,(co)) of the 
observable representing A 1, . . . , A, in the average sense is called the approximate 
simultaneous measurement of A,, . . . , A,,. Namely, M satisfies the following con- 
ditions: 

(i) (domain condition) for each i, the set D,(&) is the core of the self-adjoint 

operator Ai (= jIzAi(dL)), i.e. Ai is an essentially self-adjoint operator on o,(,&) 

(C ‘(Ai)), R 
(ii) (average value condition) 

(u, A,u) = ~fi(w)(u@s, A”(do)(uOs)) (uED,(&), i = 1, 2, . . . . n). (9) 
R 

Note that we have seen that D(Pfmarfi) - ) - o,(ai). Also assume that M is the 
approximate simultaneous measurement of .A;, . . ., Ai as well as A,, . . ., A,. Then 

we see, by (9), that (u, Aiu) = s f;(m) (u@s, A”(&I)(u OS)) = (u, Aiu) (uED,(&, 

i = 1, 2, . . . . n). So we see that Aa= Ai on o,(&) (i = 1, 2, . . ., n). Therefore, by the 
domain condition we get Ai = Ai (i = 1, 2, . . ., n). 

Now we shall define the notion of the “error” in an approximate simultaneous 
measurement. If we regard the approximate simultaneous measurement M of 
A 1, . . ., A, as the substitute of the exact simultaneous measurement of A,, . . ., A,, 
how can we represent the “fitness” (or “goodness”) of this substitute? Though the 
approximate simultaneous measurement M is tit for A,, . . ., A, in the average sense 
(i.e. (i) and (ii) in Definition 4, (2) hold), it is not always tit for A,, . . ., A, in “every” 
sense (i.e. M is not always an exact simultaneous measurement of A,, . . ., A,). 
However, we can say that it is fit for A,, . . ., A, in “every” sense if //(ai - Ai @ I) (u @ s)ll 
=0 (ueD(Ai),i= 1,2 ,..., n). Because this implies that for any u E r)?= ,D(Af) and 
any positive integer k 

(F&)~(u@s) = (F&)k-l&~@~) = (~i)k-‘(Aiu@s) = . . . = (A;&s, 

so we see that 
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~i’(uQs, A,(dn)(uQs)) = Jlk(U, Ai(&.)U), 
R 

hence 

(u@s, ai( = (u, A,(G)u) (uEH, G~99r,, i = 1, 2, . . . . n), 

which implies that the measurement M is an exact simultaneous measurement of 
A I, . . ., A,. Also if M is the exact simultaneous measurement of A,, . . ., A,, clearly 
II(~j-Ai@I)(u@s)l~ = 0 holds for all U~D(Ai) and i = 1, 2, . . . . n. Therefore, 

(ll(Ai_AiOI)(UOS)ll)1= 1 seems to represent the “unfitness” of M for A,, . . ., A, on 
a state u. 

Also for a particular approximate simultaneous measurement M = (K, s, (Q, % A”)), f 
= (fi, . . ..f.)) of& . . . . A, satisfying that there exist functions gr, . . ., g. on 52 such 

that Ai@I = j gi(a) A”(h), (i = 1, . . ., n), we can explain that the “unfitness” 

( Ij(ai- Ai@I)(~@s)jl)l, 1 has the properties of the error in the measurement M. 
Assume that someone is under the impression that he takes the exact simultaneous 
measurement of A,, . . ., A, for u (it should be noted that this measurement is 
identified with the exact simultaneous measurement of A, @I, . . . , A, @I I for u OS), 
although he actually takes an approximate simultaneous measurement M for u (i.e. 
an exact simultaneous measurement of A r, . . ., a, for ~0s). In this situation, 
he will think that the distance (or average distance in some sense) between the 
value a (= (a,, . . . . a,)) obtained by the measurement M and the “true” value 
ci (= (cir, . ..) a,,)) (i.e. the value obtained by the exact simultaneous measurement 
of A,@I, . . . . A,@ I for UQS) is the error (Ai):= 1 in the measurement M, that 

’ is, di = {Exp[la^,-ai1 ]} I”. Taking a measurement M’ = (K, s, (52, 9, A),, h = (f,, . . . 

. . ..f., 91, -.a, SJ), we can easily see that di = [s Ij&~~)-g~(o)l~ (u@s, A”(dw)(u@~))]‘~~ 

= Il(ai- Ai 0 I) (U 0 S)JI. Therefore, in this aarticular case we can regard the 
“unfitness” ( /(ai - Ai @ I)(u 0 s)jl)~= 1 as the error (di(u))lzl in the measurement M. 
However, in general, we can not define the error in the measurement M since we 
have no method to know the “true” value. 

The above arguments lead us to the following definition. 

DEFINITION 5. Let A,, . . . , A, be standard observables on R in a Hilbert space H. 
And let M = (K, s, (52, % A”), f(w) = (fl (a), f2(w), . . ., J,(w)) be an approximate sim- 
ultaneous measurement of A,, . . ., A,. Then, the unfitness (d,(Ai, u);,, of M for 
A 1, . . . . A,’ on a state u (jiu/ir, =- i) is defined by 

dM(Ai, U) = il(~i-AiO~)(~Os)ll (uED(AJ), (10) 

where (10) should be interpreted as d,(Ai, u) = co for UED(A~)\D&&) since 
D,(z&) E D(A,). 
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Remark 1: (1) In Lemma 2 (iii) (cf. Section 4), we will see that [[(a, - Ai 0 I) (u @ s)[l 2 
= ~~R,(u@s)~~2- llAiUl12 = {P(li, A mar(i)(dA) u) -J A2 (u, Ai u) for all u E o,(ai) 

R 
R 

(= D@=(i))) (i = 1, 2). 
(2) Since &(A,, u) is not defined for UEH\D(&), we think that Definition 5 is 

not final but temporary. When (a,- Ai@Z) on Z)(ai, n D(A, @ Z) has a unique 
self-adjoint extension [ai-&@ Zl (for example, when Ai and Ai 0 Z commute), 
it seems to be natural to define the unfitness d,(& U) such that &(A,, U) 
= II[Ri-Ais~(~~s)ll (UED,([~i_Ai61])), = 00 (otherwise). Furthermore, we 
can define the “unfitness observable” Fi(dl) on R in H such that (u, F@l)u), 
= (u@s, l&@Zl(dUu@s)) HBK (UE H). So it seems to be reasonable to 
assume the essential self-adjointness of (ai-&@ I) on ZJ(ai) n D(A,@ I) in Deli- 
nition 4 for approximate simultaneous measurements. However, without this 
assumption we can prove Theorem 3 (generalized approximate simultaneous 
uncertainty relation), which is one of our main results. So we proceed with our 
arguments without this assumption. We shall return to this problem again in 
Corollary 1. 

Let A,, . . . . A, be standard observables on R in a Hilbert space H and let ‘I’ * * *’ gn 

be functions in L’(R) such that gi(x) >, 0, llgillLl = 1, Jxgi(x)dx = 0 and 
R 

ix2gi(x)dx < co (i = 1, . . . . n). Now we shall consider the observable A on R” such 

that Jmar(i) = gi * A,, where (gi * Ai) (dl) : = J g,(x) A,(&. -x) dx. We can easily see that 
R 

J a2 <% (Si * AJ (da) U> = J (1-k X)2 (up gi(X) Ai u> dx 
R R2 

= Jx2gi(x)dx+J12(u, Ai(d2)u). 
R R 

So &Ii) = &Par(i) ). Also, we see similarly that (u, Aiu) = j L(u, (gi * Ai)(dl)u) 

(u ED(2imar(i)), i = 1, 2, . . ., n). Therefore, ?i is the observable repreznting A,, . . ., A, in 
the average sense. Moreover, we see by Remark 2,(l) that &(A,, u)12 
= Jx2gi(x)dx (uED(A~), i = 1, . . . . n). This particular kind of unfitness is also called 

“uisharpness”, “indeterminacy” or “fuzziness” (see [2], [3], [6]). 
The following result is obtained in [3]. 

PROPOSI~ON 5. Let A, and A, be a pair of conjugate observables in a Hilbert space 
H. Let e1 and e2 be any positive numbers. Then, the following statements (i) and (ii) are 
equivalent: 

0) 
El ‘E2 > h/2, 
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(ii) there exist g1 and g2 in L’(R) that satisfy the following conditions: 

(a) g,(X) >, 0, jlgillL1 = 1, JXg,(X)dX = 0 Und 1 X2gi(X)dX = Ei, (i = 1, 2), 

(b) there exists an observ:ble A on R2 suchRthat Am@) = gi*Ai (i = 1, 2). 

The measurement M = (L’(R), s(x), (R2, .cS?~, A”)), f(A,, A,) = (A,, A,)) of the 
A above can be easily constructed as follows: put A, = A, @I + I@ x and 

A2 = A, @I+1 @g in II@ L2(R). From the commutativity of a, and a,, 

we can define the unique standard observable A” on R2 in H@ L2(R) such that 

ai = J liA”(di,d12) (i = 1, 2) i.e. A” = a. Also choose S(X)E L2(R) such that 
. 

gl(x)Rz Is( and g2(x) = Is^(x)12 a.e., where i(x) is a Fourier transform of s(x). Then, 
by a simple calculation, we can see that M is the measurement of 2, that is, M is the 
approximate simultaneous measurement of A, and A,. Note that (ai - Ai @Z) on 
II n D(Ai@ I) has the unique self-adjoint extension [A,- Ai@ Z] since ai and 

A,@Z commute. Also note that [A,--A,@Z] = Z@x and [AZ-A2@Z] = Z@E, 

so D&A,-Ai@Z]) = H (i = 1, 2), II[A,--A,@Z](u@s)ll = IIuII~~IIxs(x)II~z and 

IIC~2--42O~I@4Wll = IbIIH. Il~xWll~~~ Furthermore, it is clear that II, 
= D,(Ai) (i = 1, 2). 

Compared with Proposition 1, the above Proposition 5 seems to give the 
satisfactory solution to the problem of deducing the statements (i) and (ii) in 
Proposition 1. However, the class of the approximate simultaneous measurements 
considered in Proposition 5 is smaller than the class of all “simultaneous” 
measurements. Hence, we think there are some questions concerning the statement 
(iii) in Proposition 1. 

3. Existence theorem 

Now we shall mention the following theorem, which assures the existence of 
approximate simultaneous measurements of arbitrary observables A,, . . ., A,. 

THEOREM 1. Let A,, . . . . A, be standard observables on R in a Hilbert space H. Let 
” 

a,, . . . . a,, be any positive numbers such that C (1 +a;)-’ = 1. Then there exists an 
’ 

i=l 

approximate simultaneous measurement M of A,, . . ., A, such that 

&(A,, u) = aillAiull (ucD(Ai), i = 1, 2, . . . . n). 

Proof: Let C” = {z = (zr, . . ., 2,): zie C (i = 1, 2, . . ., n)} be the n-dimensional 

Hilbert space with the norm llzlln = [ i Izi12] 1/2. Put e, = (1, 0, . . ., 0), e2 = (0, 1, 0, . . . 
i=l 

. . .) O), . . . . e,=(O,O ,..., 1) E C”. And put Pi : C” -+ C”, (i = 1, 2, . . ., n), the projection 
such that Pie, = ei, Pie, = 0 (k # i). Put bi = (1 +aF)l12 and Bi = b?A, (i = 1, 2, . . ., n). 
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We take the spectral representations Ai = jL4i(d;l), Bi = J,&(dL) in H and 

0 = l LO(&) in H. Note that A,(d(@$) = Bi(~n~ Put 0: H@C’ -+ HOC” a unitary 
R 

operator such that 0 = I@ U, where the unitary operator U on c” satisfies that 

Ue, = i ei/bi. And define a projection valued measure ,& on R in HQC” by 
i=l 

A”i(d5) = ri*[Bi(d~)OPi+O(d~)0(I-P,)] ri (i = 1, 2, . ..) n). 

Since J1, . . . . A”, commute, we can define a projection valued measure A on R” in 
H@C” such that 

A”@5 1 dt 2.. . d&J = f-j A",(d&). 
i=l 

Now, we shall show that the measurement M = (C”, e,, (R”, B,, A”),f(tl, c2, . . . 
. . ., <,I = (<I, f&Y ***v a) is an approximate simultaneous measurement of 

A 1, **-> A,,. Put Ai = s <iA”(d{ld<Z.. .d<,) (i = 1, . . ., n). Then we see that 
R” 

f ICi12(uQel, A”(d5,d~,...d5,)(uOe,)) 
R” 

= ~l~i,‘(UQe,, [rj*(‘i(d~i)QPi+O(d5i)Q(Z_Pi)) O] (u@e,)) 

= J; l<l2 (~3 Bi(dt)u). i ?p Pi i ;) 
j=l j k=l k 

= lbil-2jl~12 (~7 Bi(dl)u) = lbilZjll12 (u, Ai(dlv)~). 
R R 

Hence, D,(Ai) = D(Ai) (where s = e,), so M satisfies the condition (i) in Definition 4, 
(2). Also, we see that for each i (i = 1, 2, . .., n) and G,EL?Z?~ (k = 1, 29, 

A”i(G,).(Ai(GJOI)) 
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= (Ai(G&OI)(IO U*)(Bi(G,)OPi+O(G,)O(I-Pi))(ZO U) 

= (A,(G,)@Z)-&(G,). 

267 

So ai and A,@Z 

Hence, ,&-Ai@Z 
[ai-Ai@Z] which 

commute since ai = j<&d<) and Ai@Z = st (A,(&)@Z)). 
R R 

on D(&n D(A,@Z) has the unique self-adjoint extension 
has the spectral representation 

LAimAiOzI = S (r1-52)A”i(d51)(Ai(d5*)0z)’ 
RZ 

Then we see that 

-2 J 5152 (UOe,, A”ii(dr,)(Ai(d52)0Z)(“Oe,)) 

R2 

+j lt212 (UOe,, (Ai(d52)0I)(uOe,)) 
R 

= (lbi12 -2 + I) J l5l2 (% Ai(d43 u> 

= Iail lIAiUI129 R 

which implies that D,([P$-A~@Z]) = D(A,) (where s = e,) and d,(Ai, u) = UiIIAiull. 
Therefore, the proof of theorem is complete. 

Remark 2: (1). Even when A, and A, are a pair of conjugate observables, the 
above measurement M is clearly another one considered in Proposition 5. Moreover, 
since we can take ai arbitrary positive for any fixed i, this theorem seems to give the 
solution to the problem of deducing the statements (i) and (ii) in Proposition 1 in the 
general case when A 1, . . ., A, are arbitrary standard observables. When 
ai = (n-l)1’2 (i = 1, 2, . ..) n), this theorem was essentially proved in [l]. 

(2). In the proof above the following statements were also proved: 
(i) ,& and Ai@ Z commute, so &- Ai@ Z on D(.-&) A D(Ai@ I) has the unique 

self-adjoint extension [A^,- Ai@ Z] (i = 1, 2) 
(ii) D,(&) = D,([&- Ai@ I]) = D(A,) (i = 1, 2). 
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4. Uncertainty relations 

In this section we shall discuss uncertainty relations in a quantum measurement. 
The following well-known Lemma gives a foundation for the statistical uncertainty 
relations (1). 

LEMMA 1. Let A, and A, be any symmetric operators on a Hilbert space H. Then 

CIIA,ul12-Ku, ~,~~121~CII~2~l12-l~~, 44)121 3 iMu, A,u)-(A,w 4u)12 

for all u E D(A,) n D(A,). 

Proof: See, for example, [ 191. 

LEMMA 2. Let A, and A, be any selfadjoint operators in a Hilbert space H. Let 
(K, s, (Sz, 9, J)), f = (fi, f2) be the approximate simultaneous measurement for A, and 

A,. Put ai = j J(o) A(dcd) (i = 1, 2). Then, the following equalities (i)-(iii) hold 

(9 o 

(v, Aiu) 3 (v@s, &z@s)) = ~.fi(w)(vC3s, A”(do)(uOs)) 
fi 

for all UE D,(&) and all v E H (i = 1, 2), 
(ii) 

~f&)f&4(W, &W(uOs)) 

= <&(G3s), &(e34> 

= (A,u, A,u)+<(&A,OI)(uOs), (~2-A200(uOs)) 

for all u E D,(A,) n D,(A2), 
(iii) 

! Ifi WI” (u 0 s, A”@4 (u 0 d) 

= llAi(uOS)l12 = ljAiUl12+ lI(Ai-AiOQ(uOs)l12 

for all UEDs(Ai) (i = 1, 2). 

Proof: Fix k E { 1, 2). We can see that, for any V, UED,(&), 

<v> 4~) 

= a{<(~ + 4 A,@ + 4) -<(v -4, A,(v - 4) 

-i((v+iu), A,(v+iu))+i((v-iu), AL(u-iu))) 

= ~{((v+u)Os, a,((v+U)Os))-((V-u)Os, A,@-u)Os)) 
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-i((u+iu)@s, A,((u+iu)@s))+i((u-iu)Os, A&u--iu)Os))} 

= (u,s, A,(u@s)) 

= (um, Sf,(W)&(d4(UOS)) = Jf,b)(m& Al,(w(e34). 
R R 

Since D,(_&) is dense in H, we see that 

(24 A,u) = (u 0 s, A,(u 0 4) = J fk(eJ) <u 0 s, &W(u 0 4) 
R 

for all u ED&$) and all u E H. This completes the proof of (i). 
Next we shall prove (ii). Let u be any element in D,(A,) n D,(&. Then we see by 

(i) in this lemma that 

= ((a,-A,OI)(uOs)+(A,uOs), (a,-A,OI)(uOs)+(A,uOs)) 

= <(a,-A,OI)(uOs), (&@3MG3s)) 

+<(-&-‘&OM&s), A,uOs) 

(A,uOs, (a,-A,OI)(uOs))+(A,uOs, A,uOs) 

= <(&~,CW)(uOs), (&-~,CW)(G3s)) 

+<Q@s), A,uOs)-<A,& A,u) 

+<A,uOs, ‘%(G3s))-_(‘+, A,u)+(A,u, -4,) 

= <(&~,CW)(G3s), (a,-A,OI)(uOs))-(A,u, A,u) 

+ j sz (4 (A 1 IA 0 .% A”@4 (u 0 4) + J f, (d <&w (u 0 4, A, u 0 s) 
R R 

= (A,u, A2U)+((A,-A101)(uOs), &A,@z)(2r6s)). 

Hence, the proof of (ii) is completed. Also the proof of (iii) is carried out just in 
a similar way. 

Now we have the following theorem, which is one of our main results. 

THEOREM 2 (generalized Heisenberg’s uncertainty relation). Let A, and A, be any 
self-adjoint operators on a Hilbert space H. Then for any simultaneous measurement 

M = (K s, (Q R 21, f = (fi, fJ) of A, and A, the following inequality holds: 
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4(Al9 4.4&Y 4 a -5lGQJ, A,4444 A,u)l (11) 
for all UED(A,) n D(A,), where the left-hand-side of (11) is defined to be 00 if 
d,(Ai, U) = 00 for some i. 

Proof: Put ai = J A(U) A”(do) (i = 1, 2) as Notation l,(l). Let u E D(A,) n D(A,). 

If u 4 D,(AJ for some’;, we see by the definition of the unfitness that &(A,, u) = co, 
so (11) clearly holds. Hence, it is sufficient to prove (11) for u E D,(A,) n D,(&. Let 
u be any element in u E D,(A,) n D,(A,). We see, by the part (ii) of Lemma 2, that 

(A,n, A,u)+<(a,-A,OI)(uOs), (&A,OI)(uOs)) 

= ~f,WfA~N~O~, A"(d4(~@4) 

= ;A+, A,u)+((Al,-.4,OZ)(uOs), @,-A,OZ)(uOs)), 

from which we get by Schwarz inequality 

$l@,u, A,u)-(A,u, A,n)l 

= $I<(& -A, OI)(uOs), (&@9I)(@s)) 

-<(&-A,OZ)(uOs), &-AiOO(G3s))l 

d Il(a,-A,OI)(uOs)II.II(~~--A,OZ)(uOs)ll. 

Hence, the proof is completed. 

The analogue of the following theorem was first discovered by Arthurs and Kelly 
[S] and discussed by She and Heffner in [21], when (A,, A,) is a pair of conjugate 
observables. Also Yuen [22] discussed the general case. However, their observations 
are rather physical and the class of all “simultaneous” measurements considered in 
these papers is too narrow. 

THEOREM 3 (generalized approximate simultaneous uncertainty relation). Let A, 
and A, be any self-adjoint operators in a Hilbert space H. Then for any approximate 

simultaneous measurement M = (K, s, (s2, R A”), f = (f,, fJ) of (A,, A,) the following 
inequality holds: 

(var[M, u],)“‘.(var[M, ~1,)“~ 2 I(A,u, A,u)-(A,u, A,u)l (12) 

for all u E H, where the left-hand-side of (12) is defined to be co if var [M, U]i = co for 
some i; also the right-hand-side of (12) is defined to be 00 if u$ D(A,) n D(A,). 

Proof: Put Ai = J f;(o)A”(do) (i = 1, 2). If u#D,(&) for some i, we see by the 

definition of the varkce that var[M, uli = co, so (12) clearly holds. Hence, it is 
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sufficient to prove (12) in the case that UED,(~,) n D&A,). Let u be any element in 
o,@,) n II,(&). Then we see by (iii) in Lemma 2 that 

var[M, uli = ~~&u@s)I~~-I(u@s, ai(u@s))12 

= llAiuI12+ Il(ai-AiO~)(uOs)l12-lI(U, AiU>12Y 

i = 1, 2, 

so by the arithmetic-geometric mean inequality, Lemma 1 and Theorem 2 we get 

var [M, u] 1 . var [M, u] 2 

Hence, the proof is complete. 

Compared with Theorem 3, Theorem 2 seems not to be sufficiently satisfactory, 
since the inequality (11) is not assured for all u E H but only for u E D(A,) n D(A,). Of 
course, if we assume that A,(&, U) = cc if u$D(Ai) in Definition 5, the inequality 
(11) holds for all u E H. However, this assumption seems not to be natural. So we 
shall consider natural conditions when the inequality (11) holds for all u E H 
in the case when A, and A, form a pair of conjugate observables. Let 
M = (K, s, (a, E A”),f(w) = (fi(w),f2(o))) be the approximate simultaneous measure- 
ment of a pair of conjugate observables A, and A, in a Hilbert space H. Put 

ai = i f,(o)A”(dw) (i = 1, 2). A ssume that M satisfies the following additional 
R 

conditions: 

(Cl) for each i (ai-Ai@ I) on ZI(&) n D(Ai @Z) has the unique self-adjoint 
extension [ai--Ai 0 Z] (so d,(Ai, U) is defined in the sense of Remark l,(2)), 

(C2) put K = D,([A,--A,@Z])nD,([~,-A2@Z]) and define 11~11~ = llnllH 
+~~[A,-A,@Z](u@s)ll,+II[A12-A2@Z](u@s)l/, for all uEK (we can easily see 
by usual arguments that K is a Banach space with the norm /I. lj,J. Then assume that 
D,(~,)nD,(~,) is dense in K. 

Note that approximate simultaneous measurements considered in Proposition 5 
and Theorem 1 satisfy the above conditions (Cl) and (C2) (cf. the arguments below 
Proposition 5 and Remark 242)). 

Now we have the following corollary. 

COROLLARY 1. Let A, and A, be a pair of conjugate observables in a Hilbert space 
H. Let M = (K, s, (a, 9, J), f(o) = (fi(o),f2(o))) be any approximate simuhaneous 
measurement of A, and A, satisfying additional conditions (Cl) and (C2). Then the 
following inequalities hold: 
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(i) (approximate simultaneous uncertainty relation) 

(var CM, u] r)ri2 . (var [M, u],)“’ > ti (13) 

for all ~EH (jlullH = l), 
(ii) (Heisenberg’s uncertainty relation) 

4&%, 4.442, 4 2 h/2 (14) 

for all u E H (IluljH = l), where the le$-hand-sides of these inequalities are defined as in 

Theorem 2 and 3. 

Proof: Note that (A,u, A,u)-(A,u, A,u) = ih (uED(A,)~D(A,), /z.llH = 1). 
Then (i) is a special case of Theorem 2. Also (ii) clearly holds under additional 
conditions (Cl) and (C2). 

Remark 3: Let A, and A, be a pair of conjugate observables in a Hilbert space H. 

As shown in [lo], there exists a simple measurement M = (C, 1, (R2, B2, A”)), 
f(J,, 1,) = (A,, A,)) satisfying that for any E > 0 there exists a state u, (uED(A,) 
nD(A,), jlu,IIH = 1) such that 

Il(~,-A,O~)(uOl)II,,, = E and Il(~,-A,O~)(uOl)II,,, = 0, 

where ai = 1 liA”(dl,dl,) (i = 1, 2). The example mentioned in [lo] is essentially as 
IV 

follows: Put H = L2(R2), A, = x1 and A, = s. Therefore, (A,, A2) is a pair of con- 

jugate observables in H (= L2(R2)). Put B, = 4 2. Since B, 0 Z and A, 0 Z commute 
in H 0 C, we can define A” by A”(di, di,) = (B,(dl,) @ Z)(A,(di,)@ I) and put 

j-(1,, A,) = (A,, A,). So ii, = j I, A”(dl,dl,) = B, OZ, A, = j A,A”(dL,di,) = A, @Z. 

Put u,(xl, x2) = Gexp - 
;;, -x2)2 (x1 +x2)2 RZ 1 

[ [ 
4E2 - 4 11 1/Z 

. Now we can easily see that 

IIG&-4 O~)(%O ~~ll&lc = II@, -4bIIi = ;2txz-x1)1 b&1, x,)12dx& = c2 

and also, clearly, l/(a2 -A, @ I) (u, @ l)ll,@,, = II(A, - A,) u,/IH = 0. Of course, this 
example does not contradict our result (Corollary 1 or Theorem 2) since M is not an 

approximate simultaneous measurement of A, (= x1) and A, = g but the exact 

simultaneous measurement of B, (= x2) and A, 
ha 

( > 

( > 1 

= ~ 
iax, . 

However, since Proposi- 

tion 1 includes some ambiguous sentences, there seem to be a few confusions in some 
books. 
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I would like to thank the referee. Without his suitable advice, I could not improve 
this paper. 

Note added in proof: For the further arguments of this paper, see the additional 
references [23] and [24]. 
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