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Abstract 

In this paper we propose a foundation of fiazzy measurement theory, which is described in terms of C*-algebras. 
This theory is a general measurement theory for classical and quantum systems. Here we also propose the identification: 
"measurement" = "inference". As a "fuzzy" aspect of our proposal, we show and prove several fuzzy syllogisms in classical 
systems. Since our theory is concerning measurements (and not mathematics), these syllogisms should be regarded as 
objective facts in our real world. That is, our theory is "objective fuzzy theory". Therefore, we believe that our proposal 
is a straight approach to "fuzziness". (~) 1997 Elsevier Science B.V. 
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I. Introduction 

In this paper we propose a foundation of  fuzzy measurement theory (or in short, measurement theory),  
which is a general measurement theory for classical and quantum systems. 

In Section 2 we propose an algebraic formulation (i.e., axiom) of  measurement theory. There we also 
propose the identification: "measu remen t "=  "inference", that is, their mathematical  representations are the 
same. In Section 3 we study the simple properties o f  quasi-product observables and introduce "implicat ion" 
in measurement theory. As a "fuzzy" aspect o f  our axiom, in Section 4 we show several theorems of  fuzzy 
syllogisms in classical systems. For  example, under the condition that "A ~ B, B ~ C", we can assert a kind 
o f  conclusion such as "C => A". It is also possible to assert the justification of  the s tandard  syllogism (i.e., 
"A ~ B, B ::~ C" implies "A ~ C")  for classical systems. This result is never trivial but rather remarkable 
because logic can assert nothing for the justification. Hence, in the light o f  our theory, for the first time we 
can understand actual syllogisms for classical systems. It should be noted that our proposal in Section 2 is 
not a rule in mathematics but a principle that dominates all measurements in science. Therefore, all results 
derived from our axiom are objective facts in our real world if  our axiom is true. That is, our proposal is 
an "objective fuzzy theory". This is most desirable because any theory (except "mathematics" or "method")  
should be objective, i f  possible. Therefore, we believe that our proposal is a straight approach to "fuzziness". 
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2. Algebraic formulation of fuzzy measurement theory 

In this section we propose an algebraic foundation of  fuzzy measurement theory (i.e., measurement theory). 
We believe that "fuzziness" (precisely, "objective fuzziness" proposed in this paper) is one of  the most 
fundamental concepts in science. And thus, the mathematical preparations are a little difficult. C*-algebras are 
indispensable for a foundation of  measurement theory (just like differential equations are indispensable for 
classical mechanics). We do not impose on the readers the need for a mathematical knowledge of  C*-algebras. 
We therefore begin with the definition of  the C*-algebra (cf. [11]). 

Let ,~¢ be a linear associative algebra over the complex field C. The algebra s~¢ is called a Banach algebra 
if  it is associated to each element T a real number HTll, called the norm of  T, with the properties: 

(i) IlVll > 0, 
(ii) IITI[ = 0 if and only if T = 0 (i.e., the 0-element in ,~4), 

(iii) IIT+Sll  ~< IITII + IISII, 
( iv)  II,~TII = I;~[-IITII, ~ c c .  
(v) IITSll ~< IITII. ItSll, 

(vi) ,~  is complete with respect to the norm ]]-]] . 
A mapping T H T* of  , J  into itself is called an involution if it satisfies the following conditions: 

(i) (T*)* = T, 
(ii) (T + S)* = T* + S * ,  

(iii) (TS)* = S ' T * ,  
(iv) ()~T)* = ~.T*, )~ E C. 
A Banach algebra with an involution * is called a Banach*-algebra. 

Definition 2.1. A Banach*-algebra ~¢ is called a C*-algebra if  it satisfies IIT*TII = Tll 2 for any T E~¢. 
In this paper we always suppose that a C*-algebra ~¢ has the identity element I (i.e., IT = TI = T for all 
T E,~¢). Also, a C*-algebra ~ '  is called commutative if T~T2 = TzT1 (VT1,T2 C ,~¢). 

The following are some typical examples of  C*-algebras, which will clarify its nature to those who are not 
yet familiar with the notion. 

Example 2.2. (i) Let f2 be a compact Hausdorff space, and C(~2) be the algebra, under pointwise multipli- 
cation, of  all complex valued, continuous functions on f2. Define blfll = max~o~e If(co)l, and f * ( w ) =  f (co)  
(VcoE ~2). Then, C((2) is a commutative C*-algebra, that is, f l f 2  = f 2 f l  holds for any f l ,  f2  (E C(f2)). 
Of  course, f t ( r e sp ,  f 0 )  defined by f l ( c o ) =  1 (resp. f l ( o o ) =  0), V~oEf2, is the identity element (resp. 
0-element) in C(f2). Also, we need to recall Gelfand theorem: Any commutative C*-algebra .~¢ (with the 
identity) is *-isomorphic to the C*-algebra C(f2). That is, we can always identify a commutative C*-algebra 
~¢ with C(f2). 

(ii) Let V be a Hilbert space. Let 

B(V) = { T : T is a bounded linear operator from a Hilbert space V into itself }. 

Define IITHs(v):sup{l[Tvllv : llvllv : 1}, and (T1Tz)(v)= TI(Tzv) (VvE V). Let T* be the adjoint operator of  
T. This B(V)  is of  course a non-commutative C*-algebra in general. Also note that c~c(V) -= {T E B(V) : T 
is a compact operator} is a C*-subalgebra of  B(V).  I f  the dimension of V is infinite, ~c (V)  has no identity 
I. Thus we define ~ ( V )  as the smallest C*-algebra that contains I and ~c(V).  

The spectrum Sp(T) of  an element T in a C*-algebra su¢ is defined by the set {2 E C: (T - )d)  - I  does not 
exist}; that is, 2 E Sp(T)  if and only if there exists no element S in ~4 such that S ( T - ) d ) = ( T - 2 I ) S = I .  
Note, for example, that Sp(T) is the set of  all eigenvalues of  T if T EB(C  n) (i.e., V = C  n in Example 2.2(ii)). 
Also, if  f E C(f2) in Example 2.2(i), then S p ( f )  = { f ( w )  : m E f2}, that is, the range of  f .  In general, Sp(T) 
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is a closed subset in the complex field C. An element T in C*-algebra ~ '  is called self-adjoint if T = T*. 
A self-adjoint element T is called positive (resp. projection) if Sp(T) C [0, o~) (resp. Sp(T)C_ {0, 1} (or 
equivalently, T = T 2)). A positive element T is sometimes denoted by T/>  0. 

Note that a C*-algebra ~¢ is also a Banach space. So, ~u¢ has the dual Banach space ~¢* --- {p:p is a 
continuous linear functional on ~ }  with the norm 11" II,~* (i.e., Ilpll,~,. = sup{lp(T)[ : IITII.~ ~< 1}). Define 
the mixed-state class ~ (o~¢*) such as ~ (~¢*) = {p E ~¢*: Ilpll~* = 1 and p(T*T) >~ 0 for all T E ~¢}. A 
mixed state pP (i.e., pP ~ ~ G~'*)) is called a pure state, if "pP = 2p1 + (1 - 2)p2 (Pl,P2 ~ ~ (,~*),  and 
0 < 2 < 1)" implies "pP = p~ = P2". Define 

~,P(,4*) --= {pP E ~ (~ '* )  : pP is a pure state}. 

Example 2.3. 

C(O)* 

where C(~)* 

The following identifications are well-known in functional analysis (cf. [13]): 

o//g(~2) (as Banach space) and ~ (C(~)* )  ~ J¢'+1([2), 

is the dual Banach space of  C(~2) and 

,//¢'(Q) = {it : It is a regular signed measure on ~2}, 

o////+1(~2) = {it E J4'(Q) : It is non-negative and It(Q) = 1}. 

Also we see 

~ p ( c ( ~ ) * )  ~ ~ r + l ( ~ )  = {a~0 ~ ~ z + ~ ( ~ )  ~o0 c ~ } ,  

where 6,, o is a point measure at ~o0, i.e., 6o~o(f) = fo f(o~)6~o0(d~o) = f ( ~ 0 )  (Vf  E C(~2)). 

The concept o f  "fuzzy observable" was first introduced in quantum mechanics by Davies [3]. (Also see [5]). 
The following definition (for fuzzy systems) is an easy generalization of  his idea. "Observable" in physics 
naturally represents "physical quantity", i.e., position, momentum, energy, etc. 

Definition 2.4 (Fuzzy observable, crisp observable). Let d be a C*-algebra. A fuzzy observable (or in short, 
observable) (X,~(X) ,F)  in ~ is defined such that 

(i) a label set X is a finite set, that is, 

X = { x l , y  2 . . . . .  x J } 

and JA(X) is the power set o f  X,  i.e., ~ ( X )  = {~ : ZC_X}, 
(ii) for every E E ;~(X), F ( £ )  is a positive element in ~ '  such that F ( 0 ) = 0  and F ( X ) = I ,  where 0 is the 

0-element and I is the identity element in ~ '  and 
(iii) the following holds: 

F ( -  ~) = ~ F({x})  (VEC,@(X)).  (2.1) 
xE£  

Also, if F ( £ )  is a projection for every E (E ~(X)) ,  a fuzzy observable (X,,~(X),F) is called a crisp observ- 
able. 

Remark 2.5. Let (X,,~(X),F) be an observable in ~¢ and let p E ~ ( d * ) .  Then, putting It(Z) = p(F(E)) 
(V-~ c : ~ ( X ) ) ,  we see that (X,:~(X),p) is a probability space. 

Let (Z,~(Z) ,H)  be an observable in a C*-algebra d .  Let g be a map from Z into Y. Then, we can define 
the observable (Y,~(Y) ,  G) in ~¢ such that G(F)=H(g l(F)) (VF E,~(Y)).  This observable (Y,~(Y),  G) is 
called an image observable of  g for (Z,~(Z),H).  
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Let K be a finite set, that is, K = {1,2 . . . . .  ]KI}. (We do not regard this K as an ordered set.) For each 
k ~ K, consider a finite set X~ ~ 2 J~ = {xk,x k . . . . .  x k }. The product set of  Xk's is defined by 

X AUk = {(Xk)kGK = (Xl,X2 . . . . .  XIKI) : X l  ~Xl,X2 ~Y2 . . . . .  XlK I ~XIKI} • 
kEK 

Consider Ek (E ,~(X~)) for each k ~ K. Define Xk~KT----.k by {(Xk)k6K : Xk ~ ~-----'k, k ~ K}. Since K is not regarded 
as an ordered set, we can write, for example, Xk~KY-k = (XkeD~k) X (Xk~K\D~k) = (X~K\D'Ek) X (Xk~DEk), 
where D C_ K. 

Definition 2.6 (Marginal observable, quasi-product observable, consistency). Let 0~¢ be a C*-algebra. Let K 

= {1,2 . . . . .  IKI}. 
(i) Consider an observable O _= (XkcKXk, ~(Xk~KXk) ,F)  (with a label set XkeKXk) in ,~/. Let D C K. An 

observable OD = (XkcDXk, ~(Xk~DXk), FD) in ,~¢ is called a D-marginal observable of  O if it satisfies 

for all -=k E ~(Xk),  k ED.  Also this OD is denoted by OlD. Here note that the marginal observable OlD 

is equal to the image observable o f  gL, for O, where XkcKXk ~ (Xk)k~K g o  (Xk)keD E XkcoXk. 
(ii) For each k EK, consider an observable Ok =-- (Xk,.~(Xk),Fk) in J .  I f  there exists an observable OK 

-- (XkcKXk,;~(Xk~KXk),F) in .~¢ such that Oxi{k} = Ok for all k C K ,  then [Ok " k E K ]  is called 

consistent. Also, this OK is called a quasi-product observable of  [Ok : k C K], and is sometimes denoted 
0, OK OK 0 by (XkEKXk, ,~ (XkcKXk)  , Xk~KFk ), or  XkE K k. 

Note that the consistency of  observables [(Xk,~(Xk),Fk) :k  EK] in d is not guaranteed in general. The 
following lemma is well-known (and easy). 

Lemma 2.7. / f  the commutativity condition 

Fk,(~k,)Fk2(~kz)=Fk2(3k2)Fk,(~k,) (V3k, E'~(Xk,), V~k2 E~(Xk~), kl • k2) 

o F holds', then we can construct a quasi-product observable 0 =- (Xk~xXk,g/(XkcKXk ), F ~ Xk~ K k) such that 

F(,_,~I X ,--,~2 X . . .  X~IKI) =FI(E1)F2(S2)...FIKI(EIKI). 
It is, of  course, the case that the uniqueness is" not guaranteed even under the above commutativity condition 
(see Lemma 3.1). 

Based on the above mentioned mathematical preparations, it is viable to propose a foundation of  fuzzy mea- 
surement theory. Since this theory is concerning measurements (and not mathematics), for each fundamental 
object in measurements, it is essential to determine its mathematical representation. I f  we have no procedure 
of  this kind, our theory will be "mathematics" or "subjective theory" (i.e., "method"). But that is not our 
intention. The procedure will be done by the analogy of  quantum mechanics. That is because physics is a 
typical objective theory. As the most basic requirement for a fuzzy theoretical description of  a fuzzy system 
we have the following axiom: 

Axiom 0 (Fuzzy system, state, observable, measurement, measured value, true value). With any fuzzy system 
(or in short, system) S, a C*-algebra d can be associated in which the fuzzy measurement theory of  that 
system can be formulated. 
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(i) A state 69 of the fuzzy system S is represented by a pure state pP (~ ~P(~¢*)); and an observable 
6z (with a label set Z) is represented by an observable (defined in Definition 2.4) O = (Z,~(Z),H) 
in the C*-algebra ~/. Also, the measurement Jg(Cz, So), i.e., the measurement of the observable Cz 
for the system S with the state O, is represented by M(O,  Sp~) in the C*-algebra ~ ' .  

(ii) We can get a measured value z (~Z) by the measurement Jg(Cz, So). 
(iii) Let 6cr be an observable, which is represented by the image observable (Y,~(Y), G) of g : Z ~ Y 

for O. (Here Cr is also called an image observable of g for Cz.) When we get the measured value 
z by the measurement J/(Cz,So), we consider that the value (or, true value) of Cv (for the system 
S with the state O) is equal to 9(z). 

Remark 2.8. A fuzzy system S always has its state O (or its mathematical representation pP (~ ~P(~¢*))). 
Thus it should be denoted by So (or Sp~). However, we sometimes do not know the state O (or pP) of a 
fuzzy system S. Hence, we sometimes denote ~g(Cz,So) by ~g(Cz, S) (or M(O,  Sv~ ) by M(O,S) ) .  

Another axiom presented below is analogous to (or, a kind of generalizations of) Born's probabilistic 
interpretation of quantum mechanics. 

Axiom 1 (Probabilistic interpretation of  measurement). Consider a measurement Jg((;z, So), which is repre- 
sented by n ( o  -= (Z,~(Z),H),Spp) in a C*-algebra ~¢. Assume that z (~ Z) is the measured value obtained 
by the measurement ~¢'(Cz, So). Then, 

(*) the probability that the z(~ Z) belongs to a set ~, (~ ~'(Z)) is given by pP(H(~)).  

Our main proposals are the two axioms (i.e., Axioms 0 and 1) stated above. We often identify J//(Cz, So) 
with M(O,  Spp). The measurement ~/(Cz, So) (or, its mathematical representation M(O,  Sp~,)) is sometimes 
called a simultaneous measurement if Cz (or, its mathematical representation O)  is a quasi-product observable, 
i.e., the label set Z is considered as the product set XkcKXk. (Here the word "simultaneous" is independent of 

time.) Putting Z = XkcKXk, Y = Xk~DXk (where D C_ K) and g = go such that Xk~xXk ~ ( x ~ ) ~  , .qo (Xk)k~ D 
Xk~DXk, we get the following axiom as a direct consequence of Axioms 0 and 1. 

Axiom 1' (Simultaneous measurements). Consider a simultaneous measurement d//(O×kc~xk,So), which is 
represented by M(O = (XkExXk, ~(XkcxXk),  X°~KFk), Sop) in a C*-algebra d .  Let D C_K. (Thus the 
D-marginal observable OlD ~ (Xk~DXk, ~(Xk~DXk), FD) in ~4 represents an observable C×k~ox ~, which is 
also called the D-marginal observable of Cxk~x~.) Assume that x(=(xk)kcK C XkcKXk) is a measured value 
obtained by the measurement J//((-Ox~x~, $o). Then, 

(i) the probability that the x (=(xk)kcK E XkcxXk) belongs to a set ~ (C ~(Xk~KXk)) is given by 
PP((XOEKFk)(ff)), 

(ii) the (Xk)kcD (=  9~(X) = go((xk)kEK)) is regarded as the value of the observable C×k~DX k for the system 
So (obtained by this measurement ~'(6~×~c~xk,So)). 

In particular, putting D = {k} (Vk E K )  in (ii) above, we see that 
(iii) the xk (=  g~((Xk)kcK)CXk) can be regarded as the value of the observable (5~xk for the system So. 

Now we investigate "fuzzy inference" (or in short, "inference"). We propose the identification: "inference"= 
"measurement". (We will show that, throughout this paper this identification is justified). That is, "fuzzy 
inference" is another form of "fuzzy measurement" (i.e. "measurement"). The only difference between the 
two is that of  the view-points. Therefore, the following Axiom 1" is another form of Axiom 1 t from a 
different point of view. For simplicity, we identify ,/g(Cz,So) with M(O, Spp) in the following axiom (and 
in what follows). We hope that the reader does not confuse a measurement ~[(Cz,So) with its mathematical 
representation M(O,  Spp). It is obvious that we can take an actual measurement J/l(Cz,So) even if we do 
not know M(O,  Spp). 
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Here we can state the following axiom as another form of Axiom 1 t for K = {1,2} (or, replacing XkcDXk 
(resp. Xkcx\DXk ) by X1 (resp.)(2)). 

Axiom 1" (Fuzzy inferences). Let S be a fuzzy system with the pure state pP (E ~ P ( ~ * ) ) ,  which is for- 
mulated in a C*-algebra d .  Let O = (X1 x X2, :~(X1XX2), FIX°F2)  be a quasi-product observable of 
(XI,,~(XI),F1) and (X2,~(X2),F2). Then, if we know the value xl (~X1) of the observable (XI,~(X1),F1) 
for the system Sp~, we can infer, by the fuzzy inference M(O, St,,,), that the probability that x2 (EX2), 
the value of the observable (Xz,~(X2),F2) for the system St,,,, belongs to a set ,-~2 ( E ~ ( X 2 ) )  is given by 
PM(O,S#,),(X1, ~2 ), where 

pP((F1X°Fz)({x1 } x ~2)) 
PM(O,S,,~, )(Xl, ~2 ) = pP((F1X°F2)({Xl } x X2)) " (2.2) 

Here we assume, for convenience, that this expression is equal to lY2I/]X21 if pP((FIX°Fz)({xl} x ) (2) )=  0. 

Remark 2.9. For simplicity, we omitted several arguments: for example, the arguments about the case that a 
label set X is infinite, a C*-algebra d has no identity, and so on. For further arguments, see [8]. 

Remark 2.10. Note that a quantum system S is a kind of fuzzy system, which is described in a non- 
commutative C*-algebra ~ (V)  (cf. Example 2.2 (ii)). In other words, our axiom includes Born's probabilistic 
interpretation of quantum mechanics. Hence, if  quantum theory (i.e., Born's axiom) is not true, our proposal 
is not true either. All results derived from our axiom, as well as Born's axiom, are facts that should be 
tested by serious experiments. That is because our proposal is not a rule in mathematic but a principle that 
dominates all measurements in science. In fact, Bell showed in [2] that Born's axiom predicted a surprising 
fact, i.e., the existence of something faster than light. In spite of this unbelievable prediction, Born's axiom 
has been well authorized by serious experiments (cf. [1, 4, 12]). We introduce the following classification in 
fuzzy measurement theory: 

commutative fuzzy theory (for classical systems), 
Fuzzy measurement theory Non-commutative fuzzy theory (for quantum systems), 

where a C*-algebra ~ is commutative or non-commutative. 

Remark 2.11. If  we want the data concerning both O1 and 0 2 for the system Sp,,, according to Axiom l'(iii) 
for K = {1,2} we must take a simultaneous measurement M(Ol2 =-- O1X°'202,SpP). Therefore, if  a quasi- 
product observable O12 does not exist (i.e., [O1,02] is not consistent), the concept of "the data concerning O1 
and O2 for the system Sp,," is nonsense, i.e., it has no reality. This is a prevalent notion in quantum theory as 
in the case that the concept "the momentum and position of a particle" or "the trajectory of a particle" is mean- 
ingless in quantum theory. (For the recent results, see [6,7,9].) It should be emphasized that the importance 
of this spirit (i.e., "the consistency of [Oi, O2]" ~ "the reailty of  data") is essential throughout this paper. 

3. Quasi-product observable and implication 

Most of the remaining part of this paper will be devoted to investigating classical systems in measurement 
theory. As the commutative fuzzy measurement theory is rather easy, people tend to overlook important facts 
in classical systems. Since quantum theory is moderately difficult, it is rather handy compared to classical 
fuzzy theory. Hence we will investigate classical fuzzy systems in comparison with quantum theory. In this 
section we study the properties of  quasi-product observables and implication in measurement theory, which are 
the preparations for the next section. Here, again, note that we always identify J{(6~z, So) with M(O,  Spp). 
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Let X =  {xl,x 2 . . . . .  x J}. Let O -- ( X , ~ ( X ) , F )  be an observable in a commutative C*-algebra su¢ (hence 
by Gelfand theorem in Example 2.2, we can assume that s¢ = C(I2)). From (2.1), we can consider the 
following identification: 

( X , ~ ( X ) , F ) <  , [[F({xJ})](co) ' j  = 1,2 . . . . .  J ] 

(where F({xJ})  - [F({xJ})] E C((2)), and therefore denote 

Rep[O] = Rep[(X, ~ ( X ) ,  F)]  = r[[F({xj})](co) : J = 1,2 . . . . .  J ] .  

It is clear that 

0 ~ [F({xJ})](co) ~< 1 and 
J 

~-;~[F({x/})](co) = 1 (Vco E O) ,  
j= l  

that is, each F({xJ})  is a membership function (cf. [14]) on a compact Hausdorff space O. 
Consider two observables O1 - (X1, ~(X1 ), F1 ) and 02 g (X2, ~(X2), F2) in C(Q) such that 

1 2 J~} and )(2 ~ 2 ,x J2} X 1 ~-  { X l , X l ,  . . ,X  1 
• ---~ {X2, X2, . . . .  

Let O12 = (X1 X )(2, ~(X1 X X2), F ~ F1 X O12 F2) be a quasi-product observable with the marginal 
observables O1 and 02. (The existence of  O12 is guaranteed by Lemma 2.7 since C(12) is commutative.) 
Put 

Rep[O12] = 

[F({(x~,x2 ~)})](co) [F({(x l,x2)})](co) ... [F({(x~,x &)})](co) 

[F ( { (x~ ,x  1)}) ](co) [F({ (x~,x~)}) ] (co)  ...  [F({(x~,x~2 2)})](co) 

[F({(xJ' ,x l )}) ] (co) [F({(xJ',x2)})](co) J, J: • . .  [ F ( { ( x l  , x2  ) } ) ] ( c o )  

Let X =  {xl,x 2 . . . . .  x J}. Let O -- ( X , ~ ( X ) , F )  be an observable in a C*-algebra ag. Put X = ~.yU~___,n 
(where 2y f"lE n = 0 ) .  Define the map g : X -+)((2) - {y,n} such that g ( x ) = y  ( i f x c E y ) ,  = n  ( i f x C  En). 
Here we can define the two-valued observable (Xc2) ~ {y,n},~(X(2)),F(2)) in s¢ as the image observable 
of  g for O. This two-valued observable is also called yes-no observable or 1-0 observable. The following 
lemma lays the conditions that a quasi-product observable of  yes-no observables should meet. 

Lemma 3.1. Consider yes-no observables Ol = ( X I , ~ ( X 1 ) , F 1  ) and 02 - (X2, ~@(X2),F2) in a commutative 
C*-algebra C(Y2) such that 

Xl = {yl ,na} and X2 = {y2,n2}. 

Let O12 ~ ( X  1 X Y2, ~ ( Y  1 X X2)  , F ~ F1 X°'2F2) be a quasi-product observable with the marginal 
observables 01 and 02. Put 

Rep[OT2] = [ [F({(Yl'  Y2)})](co) [F({(yl ,  n2)})](co) ] 
[F({(nl ,  Y2)})](co) [F({(nl ,  n2)})](co) J 

[ ~(co) [FI({yl})](co) - ~(co) 1 
[ [F2({Y2})](co) - ~(co) 1 + u(co) - [ F l ( { y l } ) ] ( c o )  [F2({y2})](co)J ' 

(3.1) 
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where ct e C(~?). (Note that [F({(yl,  Y2)})](0)) + [F({(yl,  n2)})]((0) = [Fl ({Yl })](02) and [F({(yl,  Y2)})](0)) 
+ [F({(nl ,Y2)})](0))= [Fz({y2})]((0).) Then, 

max{0, [F~ ({Yl })](0)) + [Fz({y2})](0)) - 1} ~< c~(0)) ~< min{[Fl({y~ })](co), [Fz({y2})]((0)} 

(V(0 E ~2). (3.2) 

Conversely, for any c~ (c C(~2)) that satisfies (3.2), the observable 012 defined by (3.1) is a quasi-product 
observable with the marginal observables Ol and 02. Also, note that 

[F({(yl ,n2)})](0))=O <=* c~(0))= [Fl({yl})](0)) ~ [F,({yl})]((0)~< [Fz({y2})](0)). (3.3) 

Proof. Though this lemma is easy, we add a brief proof for completeness. Since 0 ~< [F ( { (x l , x~) } ) ] ( (0  ) <<. 1, 
(VxJ,x2E {y,n}), we see, by (3.1), that 

0 ~< ~((0) ~< 1, 0 ~< [F~({y,}) ] ( (0) -  ~(0)) ~< 1, 0 ~ [F2({Y2})](0))- ~(0)) ~< 1, 

0 ~ 1 + :~((0) - [Fj({yl})]((0) - [F2({y2})]((0) ~< 1, (3.4) 

which clearly implies (3.2). Conversely if c~ satisfies (3.2), then we easily see (3.4). Also, (3.3) is obvious. 
This completes the proof. [] 

Next we provide several examples, which will promote an understanding of our theory. 

Example 3.2. Let f2 = {(Ol ,O)  2 . . . . .  CON} be a set of tomatos, which is regarded as a compact Hausdorff 
space with the discrete topology. Let C(Q) be as in Example 2.2. Note that a tomato 0)n is represented by 
a fuzzy system S~ ..... (cf. Example 2.3). Consider yes-no observables O,D = (XRo,~(X,o),F,o) and O~w = 
(Xs~.,~(X~.),F~w) in C(t?) such that 

X~o = {y~D,n~o} and X~w = {y~w,n~w}, 

where we consider, for convenience sake (cf, Remark 3.3), that "YRD" and "nRD" respectively means "RED" 
and "NOT RED". Similarly, "Ys~." and "nsw" respectively means "SWEET" and "NOT SWEET". We see, by 
Axiom 1, that 

(*) the probability that xR~ (CX, D = {y,o,n~o}), the measured value by the measurement M(O,o,S~,,,,), 
belongs to 3RD (CARD -- {y,D, nRD}) is given by 

,L~,,(F.D(Y.o)) (=[F.o(Y.o)](0).)). 

That is, the probability that the tomato con is observed as "RED" (resp. "NOT RED") is given by 
[FRo({yRD})]((0n) (resp. [FRD({n,D})](0)n)). (Continued to Examples 3.4 and 4.14). 

Remark 3.3. (i) The words (i.e., "RED" or "NOT RED") as labels are not essential in our theory. Recall 
Axiom 0, that is, "observable" is a fundamental object in measurements. Thus, it is proper that observables 
exist before words. In fact, many words were created in order to represent "observables". Therefore, though 
words are not essential in our theory, we do not deny the fact that "observable" (and thus, "membership 
function") is a handy mathematical tool for describing the ambiguity that can be found in the definition of a 
concept or the meaning of a word. 

(ii) In order to promote a better understanding of our theory, we must provide a lot of examples, for 
instance, a quantum spin system ( ~  = B(C2)), a measurement of pencil's length by using fuzzy numbers 
( d  = C(E U {oc})), an "imaginary" measurement in statistical mechanics ( ~ '  = C(EMU {oc})), etc. 
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(cf. [8]). In this paper we choose the simplicity of  "tomato example" since we consider that it does not 
miss the essence of "fuzziness". 

Example 3.4 (Cont&uedfrom Example 3.2). Consider the quasi-product observable as follows: 

O = (XRD X Xsw, ~(X,D X Xsw), F =-- FRo X ° Fsw), 

that is, 

Rep[O]= [ [F({(yRD, Ysw)})](co) [F({(yRD, nsw)})](CO)] 
[F({(nRD, y~w)})](CO) [F({(nRo, nsw)})](co) 

~(co) [FRD({yRD})](CO) -- O~(CO) 

[Fsw({Ysw})](CO) -- C~(CO) 1 + C~(CO)-- [FRr,({yr~r~})](CO) -- [Fsw({ysw})](co) 

where c~(co) satisfies (3.2). Hence by Axiom 1", when we observe that the tomato co, is "RED", we can infer, 
by the fuzzy inference M(O,  Se,,,o ), the probability that the tomato co~ is "SWEET" is given by 

[F({(yRD, YSW)})](COn) 
[F({(yRo, Ysw)})](con) + [F({(y,D, nsw)})](con) " (3.5) 

Here note that (3.5) implies 

"[F({(yRt,,n~w)})](C~,,) = 0" if and only if "RED" =:> "SWEET". (3.6) 

which is also clearly equivalent to "NOT SWEET" ~ "NOT RED". 

Being motivated by (3.6), we introduce the following definition of "implication" as a general form which 
is applicable to classical and quantum fuzzy systems. 

Definition 3.5. Let Ol -- (Xl,~(X1),Fa) and 02 - (X2,~(X2),F2) be observables (not necessarily two- 
valued observables) in a C*-algebra d .  Let O12 = (X1 X Xe, ~(X1 X X2), FI X °12 F2) be a quasi-product 
observable of  O1 and O2. Let pP E ~P(~¢*). Let 31 E ~(X1) and 32 E ~(X2). Then, the condition 

pP ((FIX°'2F2)(31X(X2 \ 32))) =0  (3.7) 

is denoted by 

O 1' ~ O~ 2 . (3.8) 
M(O~2,S,p) 

Remark 3.6. (i) (3.7) is of course also equal to 

O1 x ' \z '  ~ 0 x~\z~ 
M(Ot2,s,,p ) 

since O12 = O{1,2} = O21 (i.e., K = {1,2} is not regarded as an ordered set). 
(ii) The data concerning both O1 and 02 for the system Sop are obtained by a simultaneous measurement 

M(O12 =--- OlX°'202,Spp) (cf. Remark 2.11). Assume that we get a measured value (xl,x2) (EX1 X X2) by 
the measurement M(O12,Spp). And assume the condition (3.8). I f  we know that xl C 31, then we can assure 
that x2 E 32. Therefore, Definition 3.5 is a direct consequence of Axiom 1' (or, Axiom 1"). 
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R e m a r k  3.7. (i) Since our theory is formulated in C*-algebras (i.e., one of  the fields of  mathematics),  it is 
proper that we always use " ~ "  (as in (3.3) and elsewhere) as the rule in usual logic. That is, our theory is 
based on usual logic. The reader should not confuse this " ~ "  with " ~ " in (3.8). 

M(O~:,S,,~, ) 
(ii) Note that physicists never use "quantum logic" but "usual logic" + "Born 's  axiom". In fact, most 

physicists are not familiar with quantum logic because it is simply one of  the symbolic (and mathematical) 
aspects o f  Born 's  axiom (i.e., our axiom for ~¢ = ~ ( V )  and crisp observables). Given our proposal for the 
foundation of  measurements as in Section 2, our present situation is the same as that o f  physicists ' .  Hence we 
do not concern ourselves to make "fuzzy logic" as a mathematical symbolization of  our axiom for ~ '  = C(Q). 
We are not concerned with mathematics but measurements (i.e., inferences). Note that mathematics has no 
reality in itself since mathematical theory always has a lot o f  interpretations. Therefore, our theory, as well as 
other excellent theories in physics, did not start from mathematics. Recall the correspondence ",Jff(Cz, So) ~-+ 
M(O,  St,,,)" in Axiom 0. Also recall the difference between the theory of  differential equations and Newtonian 
mechanics. 

4. Consistency and fuzzy syllogisms 

In this section we study the consistent condition for observables (i.e., a generalization of  Definition 2.6). 
We show several theorems of  fuzzy syllogisms (i.e., theorems conceming "implication" in Definition 3.5) as 
a "fuzzy" aspect o f  our axiom. Following physicists '  example, we do not intend to make "fuzzy logic" as a 
mathematical theory (cf. Remark 3.7). 

Though we are not concerned with quantum theory in this paper, our investigations for classical systems 
become clearer in comparison with quantum theory (i.e., non-commutative fuzzy theory). Therefore, the 
following definitions (Definitions 4.1 and 4.2) are common in both classical and quantum fuzzy 
theory. 

Definition 4.1. Let o~4 be a C*-algebra. For each k E K ~ {1,2 . . . . .  ] K ] -  1,1K]}, consider a label set Xk. 
Consider c~ (C_ ~ ( K ) )  such that UDc~D=K.  Then, ~ = [ O D = ( X k c o X k ,  ~ ( X k c o X k ) ,  FD) : D E ~ ]  is 
called a covering family of  observables in ~ ,  if  it satisfies the following condition : 

OD,[D, AD2=OD2]D, AD2 ( V D 1 , V D z c ~  such that D1 ND2 ~ 0). 

Note that, if  ~ is a covering family, then OD, I{k} = ODzl{k} for any k CK and any D I , D 2  E ~  such that 

k CD1 ND2. Thus, a covering family of  observables (~ determines a unique {k}-marginal observable Ok 
(X~, .~(Xk ), Fk ) for each k C K. 

The following definition is a generalization of  Definition 2.6 (i.e., the case that ~ =  {{1}, {2} . . . . .  {IKI}}). 

Definition 4.2. Let ~ be a C*-algebra. A covering family of  observable ~¢ = [ 0 D =- (XkeDYk,  ~ ( X k e D Y k )  , 

FD) : D E ~ (C_ ~ ( K ) ) ]  in ~ is called consistent, if  there exists an observable OK =- (XkexXk, ~(XkexXk), 
F )  in ou¢ such that 

OKID=OD (VD E ~ ) .  (4.1) 

Also, the relation (4.1) is denoted by 

[ 0  D : D E ~ ]  [- O K .  (4.2) 
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Remark 4.3. Under the condition (4.2), the data concerning ~q - [Oo : D ~ ~]  for the system S~; is obtained 
by the simultaneous measurement M(Ox, S;p). So a covering family ff has no reality, if it is not consistent. 
Recall the arguments in Remark 2.11, which correspond to the above definition for the case ~ = {{1}, {2}}. 

L e m m a  4.4. Let ~¢ be a C*-algebra. Let ~l ~ [O~), :D1 E ~ (C_~(K) ) ]  be a covering family of  ob- 
servables in ~¢ and ~2 ~- [022 :D2 ~ ~2(C_ ~(K))]  be a consistent covering family of  observables in ~¢. 
Assume that for any D1 ~ ~ there exists a D2 (~ ~2) such that 

D1CD2 and OlD, =O221D . (4.3) 

Then, ~ is" consistent. 

Proof .  Since a covering family '(~f2 is consistent, there exists an observable Ox =- (XkcxXk, ~(Xke~Xk), F,v) 
in .~¢ such that 022 = O,v[D~ (VD2E~2). Let Dj be any element in ~1. Then, by choosing D2 (E~2)  

satisfying (4.3), we see that O~, 2 = OD=I~,= (OKID=)ID,  = OKID,. This completes the proof. [] 

L e m m a  4.5. Let ~¢ be a commutative C*-algebra (i.e., ~¢ = C((2)). Let DI2 and 023 be subsets o f  K. Put 
Dr23 =-- D12 ~D23 ~ (D12 \ D23) ~ (D12 7] D23 ) /-] (D23 \ D12) ~ Ol ~D2  ~D3. Consider the following 
observables in C((2): 

OD,, -- kk~D,~( X Xk, ~ \kCD,2( X Xk] FD,2) and OD23 = (kX23Xk, ~ ( XkeD23 Xk) ,  FD23) 

such that 0o~2 ]O2~'Oo23 [O 2 • Then, there exists an observable Oz)~2~ - (Xkez),23Xk, ~(Xk~D~:, Xk ), FD,:, ) such 

that OD,23 [DL2 = ODu and 0D,23 ID23 = OD,3. 

Proof. Assume that O12 ['~D23 ~ 0. (If D12 AD23 = 0, this lemma is an immediate consequence of Lemma 
2.7.) Put gm = Xkel).,Xk = {ylm, y2 . . . . .  3/,7 ', . . . .  y~mm}, m = 1,2,3. (So, Mm = H~eDo, Igkl.) Thus, we can put, 
by Y1 X Y2 = Xk~o,.Xk and Y2 X Y3 = Xk~D2,Xk, that 

00,2 =(Y1 X Y2,;~(Y1 X Y2),FI2 =~FDt2) 

and 

OD2, = ( r 2  X II3, ~ (  r2 X Y3 ), F23 =- Fz),3 ). 

X 3 3 Define the observable OD,., = ( m=lgm,.~(Xm=lYm),F123) in C(g2) such that 

jl J2 "3 [F123({(Yl ,Y2 ,~f13 )})]((D) 

[Fi2({(y A yJ: )})](co) • [F23({(y~ 2 , yj3 )})](60) 
= [F2({yje})](co ) if [F2({yj2})](~o) 7~ 0, 

0 if [F2({y j2 })](~0) = 0, 

for 1 ~< Vii ~< M1, 1 ~< V j2 ~< M2, 1 ~< V j3 ~< M3. Therefore, it is clear that this lemma holds. For example, 
OD,23]D23=OD23 is easily seen as follows: 

[Fi23(YlX{(yJ2,yj3)})](co)= ~ J, J, j3 [f123({(yl , Y2", Y3 )})](00) 
y[I CYI 

"[ 23({(Y2 ,Y3 )})]( ) = ~ [Flz({(yJ,,yJ2)})](o)) F j2 j3 co 

y[, ~y, IF2 ({ y j2 })](co) 
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This completes the proof. 

_ [F,2(Y1X{y j~ } ) ] (~)  • [F23({(y j~, y J3 )})]((9) 
[F2({y j2 })](co) 

_ [F2({y~2})](09) • [F23({(y (2, y J3 )})](co) 

[F2({yJ~ } ) ] (~ )  

=[F23({(yJ2,yj3)})](og) (Vo.)~(2, 1 ~<Vj2 ~<M2, 1 ~< '7'j3 ~<M3). 

The following theorem is a kind of  generalizations of  Lemma 2.7 (which essentially corresponds to the 
result for 9 = {{1}, {2} . . . . .  { [K I}} in the following theorem). Here note that a covering family [OD "D E 9 ]  
is equivalent to [OD, " D t E {D t " D' C D for some D E 9 } ]  where OD, = OD]D, for any D ~ such that D ~ C_ D. 

Theorem 4.6. Let 9 = {{ 1,2}, {2, 3} . . . . .  {IK[ - 1, [K[}} (C ~ ( K ) ) .  Let  ~ = [OD = (X~cDXk, ~(XkcDXk),  
FD) : D E 9]  be a covering family  o f  observables in a commutative C*-algebra C(~2). (Here we can put 

= [Ok, k+1 = (Xk X Xk+1, ~(Xk X X~+I), Fk, k+l =-- FkX°k'~+'Fk+l) : k = 1,2 . . . . .  ]K[ - 1]. Then, ~ = 
[Ok, k+l : k = 1,2 . . . . .  ]K] - 1] is consistent. 

Proof.  Put D12={1,2} and D23={2,3}.  By Lemma 4.5, we get O123 (=OD,23) such that ~3 = [O123,O34, O45, 
. . . .  OIKI_1,1KI] is a covering family in C(~2), where O12 = O123]{1,2} and 023 = O123]{2,3}. Iteratively, we 

get ~IK[_ 1 = [OI23...]KI_l,O[K[_l,]K]] and fflKI = [O123-..]KI--I,IK[] ~ [OK] '  which is clearly consistent. So, by 
Lemma 4.4, we see that ~lXl-l  ~- OK. Therefore, we iteratively get ff r- Ox.  This completes the proof. [] 

Remark  4.7. This theorem is due to the commutativity of  a C*-algebra C(~2). In general (particularly in 
quantum systems, i.e., ~¢ = c~(V)), there exists no O123 such that [O12,O23] r- O123 (i.e., [O12, O23] is not 
consistent in general). Thus, we have no simultaneous measurement M(O123,Spp). Therefore, in general, we 
cannot get information (i.e., data) concerning the covering family [O12,O23 ] for the quantum system Sp,,. 
That is, in general, the covering family [O12, O23 ] has no reality in quantum mechanics. 

The following notation is the preparation for Theorems 4.12 and 4.16. 

Notat ion 4.8. Let ~ = [O12, O23 . . . .  OIKI_I,FK I] ~ [(Xk X g k + l , ~ ( g k  X gk+l),Fk, k+J ~ FkX°k'k+'Fk+j) : 
k = 1,2 . . . . .  ]K] - 1] be a covering family of  observables in a commutative C*-algebra C(Q). (So, ~ is 
consistent as in Theorem 4.6.) Suppose that Xk = {yk,nk} for each k c K .  As in Definition 4.1, put 

[ ] 0 ]  Rep[Ok] = Rep[(Xk,~(Xk),Fk)] = [F~({yk})](~o),[Fk({nk})](co)] -- pk(c0),pk(c0) 

for all k = 1,2,3 . . . . .  [g I. Furthermore, put 

Rep[Ok, k+l] = Rep[(Xk X Xk+l, ~(Xk X Xk+l), Fk, k+l )] 

= [ [Fk, k+l({yk}X{yk+l})](~O) [Fk, k+l({yk}X{nk+l})](co)] 

[Fk, k+l({nk}X{yk+l})](co) [Fk, k+l({nk}X{nk+l})](e)) J 

[ ll lO ,0.), ] Pk, k+l(oJ) Pk, k+lt 
Ol O0 

Pk, k+l(0J) Pk, k+l(cO) [ 1 ] Pk, k+l(CO) p~(~o)-- 11 
= 1 1l 11 Pk'k+l(C0) (4.4) 

p,+l(CO) -- pk, k+l(C0) 1 + pk, k+l(e)) p~(oJ) -- pl+l(CO ) 
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for all k = 1,2 . . . . .  I K I -  1, where p~,~+l(e)) satisfies (3.2). Let OK -- ( X k c x X k ,  ~'(XkcKXk), FK)  be any 
observable in C(Y2) such that 

[ O 1 2 , O 2 3  . . . .  OIKI_I,IK I] [-- OK. (4.5) 

(The existence of  OK is guaranteed by Theorem 4.6.) Put 

Pl,z,...,]Xl (co): j l , j 2  . . . . .  JlKI = 1,0 = FK = {x  j (co) : j l , j 2  . . . . .  JlKI = 1,0 , (4.6) 

j~ J~ where x k = Yk ( i f jk  = 1) and x k = nk ( i f jk  = 0). Define OI, IKI ----- (X1 X XIKI, ~(Xi X XIKI), FI,IKI) such 
that Ol,IXl = OXI{1,1KI}' Put 

Rep[OJ,iKi] =Rep[(Xl X XIK[, ~(X1 X XIKI), F~,IKI) ] 

[ [FI , IKI({Yl}X{ylKI  })](c°) [F~,IKI({y l}X{nlKI})](e))  - 

L [F,,IXl({n,}X{YIxl})](co) [FI,IKI({nl}X{nIK[})]((O)_ 

_ [  pll,K,( o) 

P°)lXl(~O) p001KI(CO) 

[ PlIIKI(~O) PI(CO)- Pl)IKI(Og) ] (4.7) 

/ plKl( o) - pl)lKl( o) 1 + pl(,o) - plKI( o)] 

(Continued to Lemmas 4.9 and 4.10 and Theorem 4.12 for K = {1,2,3}, and to Theorem 4.16 for general 
case). 

Lemma 4.9. Using No ta t ion  4.8 f o r  K ---- {1,2,3}, we see (put t ing pj,j2J3123 7_Plz3J'J2J3(c°) in (4.6), p11~123 --A and  
p101 = B ) ,  

123 

111 7_ A ( f D ) ,  011 11 - -  A ( ( D ) ,  
P123 P123 = P23  

110 11 __ A ( 6 o )  ' 01o 1 1 _  11 
P123 7_ P I 2  P123 = p l  __ P 1 2  P23  4 - A ( C O ) ,  

101 7_ B(o)), ool 11 _ B(~),  
P123 P123 = P~  - -  P23  

100 11 _ B ( ( D ) ,  0 0 0  = 11 11 
P123 = P l  - -  P12  P123 1 - Pl - P21 - P~ 4- P12  4-  P23  4-  B(co), (4.8) 

where 

max{0,-p~(co)  + p121(co) + p21~(co)} ~< A(og) ~< min{pl121(co), p21~(co)} (4.9) 

and  

max{0, p11(~ ) 4- pl(o)) + p~(co) -- ply(co) -- p21~(~o) -- 1} 

11 (. O 1 (D _ <<. B(o~)) <~ min{pl(co ) - Pa2( ),P3( ) p21~(co)}. (4.10) 

Proof.  From (4.6),  (4 .5)  and (4.4)  for K = { 1 , 2 , 3 } ,  we see 

111 110 11 101 100 10 11 11 
P123 q- P123 = P 1 2 ,  P123 4- P123 7_ P12 = P - P l 2 ,  

011 010 01 21 11 001 0 0 0  00  11 1 1 
P123 -I- P123 7_ P I 2  7_ P - P 1 2 ,  P123 4- P123 = P 1 2  --- 1 + P 1 2  - P - P 2 ,  
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Then, we see that 

Pl:(wo) P%O”) 

PK(O0) P%Jo) I=[ Pbo) 0 

P&o) - Pbo) 1 - P:No> 1. ’ 

hence, we see that 

(2) Assume that 

Then, we see that 

Pl:(wo) Pl&O) I=[ 4wo) P;(wo) - duo) 

P$Wo) P%Wo) P:(wo) - ‘4~0) 1 + 4wo) - Ptbo> - P:Go) 1 ’ 
where 

max{p:(oo), P!(WO> + P:(~o> - 1) G 4w0> d min{pt(w0Lp:(oo)I. 

Also (4.16) is equivalent to 

ojY21 * 

Wh.&><,o) 

($!‘I ,J’3 I> 

(3) Assume that 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

Then, we see that 

i 

PZ(Wo) P$OO) 4wo > PbJo) - z(wo) 

PSO) PEXWO) I=[ P&o) - a(oo) 1 + a(oo> - P;(oo> - P:bo> 1 ’ 
where 

max{O, pt(o0) + p:(w0) - P:(oo)} G a(w0) G min{p;(oo), P:(wo)). 

Also (4.19) is equivalent to 

(4.20) 

0~jYi,Y?),(Yi.n3),(nl,Y3)~ _ o;Y’l (4.21) 
M(~Iz&>~ 1 

proof. (1) By (4.13) and (3.3), we see that pIi = p&‘=O, SO, Pii= Pf G Pi’ Pi: G Pi. Therefore, we see 
that (4.11) =P;; +max{()p: - I} =pi, and (4.12) =pt +0 =pi. This implies that Pi: = Pi, i.e., (4.14). 

Also, (4.15) follows from Pit = 0. 
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11 (2) By (4.16) and (3.3), we see that pO~ = p~O = 0, so, p12 = p~ ~ Pl and p11_23_ P21 ~ P~" Therefore, 
we see that (4.11) _ p l l +  max{0, pl - p2 ~ + pl _ 1} = m a x { p l ,  pl  + pl  _ 1}, and (4.12) = m i n { p l ,  p~} + 

- -  2 3  3 3 

m i n { p l _  p~,pl_3 p l }  = min{pl ,p~}  ' This implies (4.17). Also, we see that (4.16) ¢* pOl = plO=23 0 ¢=~ 
pore = pO]l _11o= 0 ¢* (4.18). 123 123 ~ /3123 

11 (3) By (4.19) and (3.3), we see that pl°2=p°~ = 0 ,  so, P12 = Pl ~< p l  and p l l _  pl  23-- 3 ~< pl .  Therefore, we 
see that (4.11 ) = max{0, Pl - P21 + P~ } + max{0, p~ - 1 } = max{0, p] - p l  + p~}. And (4.12) = min{ Pl,  P~ }. 

1 0 _  p 0 1 =  0 ¢ff _101 _100 p001= 0 ¢=~ (4.21). This completes the This implies (4.20). Also, (4.19) ¢¢, P 1 2 -  23 1°123 = /3123 = 123 
proof. [] 

Remark 4.13. The reader must not confuse the result (for example, (4.13)=*(4.15)) in Theorem 4.12 with 
a rule in mathematics (or logic). Theorem 4.12 is a consequence of  our axiom. Note that Theorem 4.12 is 
due to Theorem 4.6, i.e., the commutativity of  C*-algebra C(f2) (cf. Remark 4.7). That means the results 
in Theorem 4.12 cannot be expected in quantum systems. For example, " (4 .13)~(4 .15)"  is meaningless in 
quantum systems. In comparison with quantum theory, Theorem 4.12 becomes clearer. 

Example 4.14. (Continued from Example 3.2). Let (2, C(f2), O1 - O~w -- (X~w, ~(X~w), Fsw) and 03 -- 
O ~  =- (X,~, ~(X,o) ,  FRo) be as in Example 3.2. Let 02  -- O~  -- (X,~,~(X,~),F,~) be an observable in C(O) 
such that 

x . .  = { y . , , " . d ,  

where "YRp" and "n,p" respectively means "RIPE" and "NOT RIPE". Put 

Rep[O1] = [[Fsw({ys~})](co),[Fsw({nsw})](~o)], 

Rep[O2] = [[F,,({y,~})](og), [Fav({nR~})](co)] , 

Rep[O3] = [[FRD({yRD})](Og),[FRD({n,D})](CO)]. 

Consider the following quasi-product observables: 

O12 = (Xsw X YRp , ,~(Xsw X Xap), F12 =-/t~w X O'2 FRp) 

and 

023 = (XRp XXRD, ~(Xi,.r, X Xim), F23 ~ FReXO23FRD). 

Let 6~),, C J//+Pl(~C~) for any fixed ogn C f2. Assume that 

o7,  o y2 , 
M(OI2,Soo, 0 ) M(O23,$6¢) 0 ) 

(4.22) 

Then, we see, by Theorem 4.12(1), that 

I [F,3({Ysw}X{y,D})](Ogn) [F13({ysw}X{nRD})](o)n)" 
Rep[O13] = [Fl3({nsw}X{y,,})](o),) [F13({nsw}X{n,o})](o),) 

_ [ [Fsw({Ysw })](co,) 0 

t [F,,({yRD})](CO,) -- [Fsw({Y~w})](co,) 1 -- [F,D({y,D})](~O,) 
(4.23) 
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So, when we observe that the tomato (D n is " R E D " ,  w e  can infer, by the fixzzy inference M(O13,S~,,,°) 
(equivalently, M(O31,S~,,,° )), the probability that the tomato on is "SWEET" is given by 

[F13({Ysw}X{YRD})](On) = [Fsw({Ysw})](on) (4.24) 
[fl3({ysw}X{yRD})](On) d- [fl3({nsw}X{yRD})](On) [FRD({yRD})](On) " 

Also, when we observe that the tomato con is "SWEET", we can infer, by the fuzzy inference M(O~3,S&,. ), 
the probability that the tomato On is "RED" is given by 

[Fl3({ysw}X{yRo})](On) = [FRD({yRD})](On) 
= 1. (4.25) 

[F13({Ysw}X{yRD})](On) + [F13({Ysw}X{nRD})](On) [FRD({YRD})](On) 
Note that (4.22) respectively implies (and is implied by) 

"SWEET" =~ "RIPE" and "RIPE" =~ "RED". (4.26) 

(Recall (3.6).) So, it is "reasonable" to reach the conclusion: 

"SWEET" ~ "RED", (4.27) 

which is implied by (4.25). (Here we are afraid that the most important fact may be overlooked. For com- 
pleteness, note that the conclusion "(4.26) ~ (4.27)" is a consequence of Theorem 4.12 (and therefore, of 
our axiom). Also see Remark 4.17.) However, (4.24) is due to the peculiarity of fuzzy inferences. That is, 
in spite of the fact (4.26), we get the conclusion (4.24) that is somewhat like 

"RED" ~ "SWEET". (4.28) 

Note that the conclusion (4.27) is not valuable in the market. What we want in the market is the conclusion 
such as (4.28) (or (4.24)). 

Example 4.15. (Continued from Example 4.14). Instead of (4.22), assume that 

' 0 {y3} (4.29) O~ yl} ~ O~ y2} O~ y2} :=:==:~ ) 3 " 
M(OI2' S'5'"n ) ' M(O23' $6 ..... 

Using Notation (4.23). When we observe that the tomato on is "RED", we can infer, by the fuzzy inference 
M(OI3,S&,, ), the probability that the tomato on is "SWEET" is given by 

[F13({ysw}X{yRD})](On) 
Q = [F13({Ysw}X{yRD})](On) + [F13({nsw}X{YRD})](On) 

which is, by (4.17), estimated as follows: 

{ [F,p({yRp})](on) [Fsw({ysw})]+[F~({y~})]- 1} 
max [FRD({y,o})](On)' [F.D({y.D })](O.) 

~< Q ~< min ([Fsw({ysw})](On) 1 } 
[FRD({YRD})](On)' " 

Note that (4.29) respectively implies (and is implied by) 

"RIPE" ~ "SWEET" and "RIPE" ~ "RED". 

And note that the conclusion (4.31) is somewhat like 

"RED" ~ "SWEET". 

(4.30) 

(4.31) 

(4.32) 

(4.33) 
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Therefore, this conclusion is peculiar to " 'fuzziness".  

The following theorem is a generalization of  the first part of  Theorem 4.12. 

Theorem 4.16 (Fuzzy syllogism or standard syllogism). Using No ta t ion  4.8. L e t  6~,~ o E , /~Pl(~).  A s s u m e  

that  

¢~{Y~-'} (Vk = 1,2, . ] K ] -  1) (4.34) O ~  y~ } ===~ V k + l  " " ' ' 
M(Ok.k+l,S,~,., o ) 

L e t  OK be any  observable  as in No ta t ion  4.8, i.e., (~ = [Oi2,O23, 034 . . . . .  OIKI_I,IKI] r- OK. Pu t  Ol,IKI = 
OKI{I,IKI)" Then, we see that  

Rep[Ol,  IKI ]at ,J)o = 

hence, we see that  

O} yl } 

[ p] l l(coo) 
pl0,11KI (CO0) 

E o 1 
P°°lKl(coo) j PlKI(coO) -- P](coO) 1 -- PlKI(coO) 

n (ylxp) (4.35) ---> VlK I . M(Ot,u,'I,S,~,,~o ) 

Proof.  Let OK be any observable such that ~ =  [O12, O23 , 034 . . . . .  OIKI_I,IKI] F- OK. Thus, we see that 
[OK[{1,3), 034 . . . . .  OIKI-I,IKI] f- OKIK\{2}. Note that (OK]{l,3})l{m) = Ore, m = 1,3. Also note, by (4.14), 
that 

:E 0 1 
R e p [ O K l { l ' 3 } ] a t ¢ ° °  P~(COO)- Pl(CO0) 1 - p~(o)o) ' 

and therefore 

O~ y'} ~ O~ y3) . 
M(OK ] { 1,3} ,S,i~, 0 ) 

Hence, by induction, we see that Rep[OI, IKI] -- Rep[OKI{1,1KI}] = (4.35) at co = coo. This completes the 

proof. [] 

Remark 4.17. Everyone knows the fact (i.e., (4.34)=~(4.36)) in this theorem. However,  one must not assume 
that this theorem is trivial. In fact, this is remarkable as it gives the answer to the question: "Why is the 
standard syllogism applicable to our life in the real world?" That is, Theorem 4.16 guarantees the justification 
of  the standard syllogism for classical systems. In other words, the obvious fact (i.e., (4 .34)0(4 .36) )  is one 
of  tests for our axiom. Also note, as stated before (cf. Remark 4.13), that this "obvious" fact is meaningless 
in quantum systems. Clearly logic has no ability to guarantee the justification of  syllogisms for actual systems 
because logic is made as a symbolization of  "obvious facts" (cf. Remark 3.7(ii)). (We of  course know the 
importance of  logic as the foundation of  mathematics.)  Thus, in the light of  our theory, for the first time we 
can deeply appreciate actual syllogisms. 

Remark 4.18. Since our axiom should be the principle that dominates all measurements (i.e., all inferences), 
it naturally includes some actual "logic". For example, (i) "usual logic" for ,~¢ = C(~2) and crisp observables, 
(ii) "quantum logic" for ,~¢ = rE(V) and crisp observables, (iii) "fuzzy logic" for 0~ff = C((2) and fuzzy 
observables. (We expect that some other "logic" will be found in our axiom.) Since our mind is the same as 
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physicists' (and not logicians') in this paper, we did not intend to make "symbolic logic" as a mathematical 
theory (cf. Remark 3.7(ii)). However, we believe, from the practical point of view, that symbolic logic is 
often beneficial even if it leaves off reality (i.e., the most important concept "measurement" disappears). That 
is because it may be used as a handy language (for example, computer language), which is convenient to get 
quick and general conclusions about particular problems. 

Lastly let us compare our theory with other "fuzzy" theories. We have an opinion that Born's axiom is the 
only one authorized theory of all other "fuzzy" theories (in the wide sense) such as Zadeh's fuzzy theory, 
Kolmogorov's probability theory, bayesian statistics and so on. In fact, none (but very few heretics) cries 
against Born's axiom. Quantum mechanics (="Born 's  axiom" + "Heisenberg's kinetic equation") is surely 
the most successful theory of this century. Note that Kolmogorov's theory is "mathematics", as he himself 
said (and gave up proposing the principle) in his famous book [10]. Compared to Born's axiom, others do 
not have finn foundations (i.e., principles such as Axioms 0 and 1). Therefore, they may be regarded as 
"mathematics" or "useful method". In fact, only Born's axiom can be judged by "true or not true", others 
are estimated by "useful or not useful" (or "from the mathematical point of view"). None but Born could 
propose the principle because he alone found out the importance of "measurement". (This may be due to his 
genius and the moderate difficulty of quantum mechanics.) Thus, as "objective theory", only Born's axiom is 
worth believing in. Therefore, we have a reason to assert the justification of our theory. 

As stated everywhere in this paper, our proposal (as well as Born's axiom) is objective, that is, " objective 
fuzzy theory". It is a fact of course, that a principle (i.e., "objective theory") should be unique. Therefore, 
if our proposal (i.e., Axioms 0 and 1) should include something superfluous (i.e., even a little mathematical 
generalization), it should be regarded as false (or, "method", "mathematics"). On the other hand, we can 
possess a lot of "subjective (or mathematical) fuzzy theories". If  one wants a "subjective (or mathematical) 
fuzzy theory", one can make a lot of "subjective (or mathematical) fuzzy theories" as a mathematical or 
technical generalization of a certain aspect of our axiom. If  the proposal is useful for a certain purpose, it 
should be estimated as a good "theory" (or "method"). 

Our sketch concerning the above arguments is as follows. For example, from the hint of Remark 3.3(i), one 
may make a useful "theory" (i.e., membership function method). His proposal is surely useful for computer 
science. Also, another may start from a probability space (X, ;~(X),/~) in Remark 2.5. This probability space 
is applicable to both "objective" and "subjective" problems. In this sense, it is quite useful. One will also 
find some resemblance between Axiom 1" and Bayes' theorem. However, only when one explicitly shows 
the correspondence ".JJ#((Sx, So)  ~ (X, ~ ( X ) ,  t~)", his assertion is objective. Also, according to Remark 4.18, 
logicians may make some practical logic. (For the precise observations concerning this sketch, see [8].) 

Though this sketch must be examined from various points of view, we believe that our theory is quite 
general as in the above sketch. However, the most important assertion in this paper is not "generality" but 
"objectivity". That is because we can easily make several general mathematical theories. 

5. Conclusions 

In this paper we proposed a foundation of fuzzy measurement theory (i.e., " objective fuzzy theory"). 
We must emphasize the importance of "measurement". Without the concept of "measurement", none can 
assert an objective statement concerning "fuzziness" (i.e., Axioms 0 and 1). We can easily expect that our 
theory is quite applicable because Born's axiom has been so for quantum systems. Here we also proposed 
the identification: "measurement" = "inference", therefore,their mathematical representations are the same. As 
one of the applications, we showed and proved several fuzzy syllogisms for classical systems. These results 
are remarkable because they have realities. We believe in the objectivity of  our theory. However, in order 
that our proposal is completely authenticated, our axiom must be examined from various points of view. Also 
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we have an opinion that any "subjective (or mathematical) fuzzy theory" is characterized as a certain aspect 
of  our axiom. We believe that our proposal is a straightforward approach to "fuzziness". 
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