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Abstract

Recently, we proposed “measurement theory”, i.e., the foundation of measurements. This is a general measurement
theory for both classical and quantum systems. The purpose of this paper is to give a foundation to statistics in terms of
measurements, that is, to characterize or understand statistics as one of the aspects of measurement theory. Studying several
statistical examples in the light of measurement theory, we show that Fisher’s and Bayes’s methods are described in terms
of measurements. Also, we characterize “estimation under loss function in statistics” in measurement theory. Therefore, we
may conclude that statistics is a certain aspect of measurements. This viewpoint is important since it clari�es the relation
between statistics and the other aspects of measurements. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently in [6,7] we proposed the foundation of
measurements, which was called “fuzzy measurement
theory” or, in short, “measurement theory”. This the-
ory is a general measurement theory for both clas-
sical and quantum systems. Also, it is composed of
two parts, that is, “objective measurement theory” and
“subjective measurement theory”. The former is fun-
damental, and the latter is rather methodological.
Most statisticians consider that statistics is closely

related to “measurements”, or, statistics is the study to
analyze measured data for some purpose. Therefore,
if a foundation of measurements has been proposed,
the proposal should be immediately examined in com-
parison with statistics. The purpose of this paper is to
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execute it, in other words, to propose a measurement
theoretical formulation of statistics. In Section 2 we
review the measurement theory that was proposed in
[6,7], and add an example concerning “at random”. In
Section 3 we study “statistical inferences for states”
in objective (resp. subjective) measurement theory,
which should be compared to Fisher’s method (resp.
Bayes’s method) in statistics. In Section 4 we study
“approximate measurements for quantities” in mea-
surement theory, which corresponds to “estimation
under loss function” in statistics. Since two main top-
ics in statistics, i.e., “Fisher’s and Bayes’s methods”
and “estimation under loss function”, can be de-
scribed in terms of measurements, we may conclude
that statistics is a certain aspect of measurement the-
ory. This viewpoint is important since it bridges the
gap between statistics and the other aspects of mea-
surements. For example, from the viewpoint, we can
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understand the relation between “fuzzy logic” and
statistics. (Throughout this paper, the word “fuzzy
logic” is used in the meaning of Remark 4.6
in Section 4.)
For completeness, we again note that our purpose

is “to formulate statistics in measurement theory”
and not “to apply statistics to measurements”. We
believe that “measurement” is the most fundamental
concept in science. Therefore, we always start from
“measurement”.

2. Measurements and “at random”

According to [6,7], in this section we introduce the
foundation of measurements. Kolmogorov’s probabil-
ity theory is of course a useful mathematical theory
for analyzing measured data. However, we are con-
cerned with measurements as well as measured data.
Therefore, we must prepare the theory of operator
algebras, which is indispensable for a mathematical
formulation of measurements, or more generally, “sys-
tem theory”. However, it should be noted that “mathe-
matics” is only used as a tool to represent the concept
of “measurement”. In fact, this paper does not include
theorems but only examples.
Let A be a C∗-algebra, i.e., a Banach ∗-algebra

satisfying the C∗-condition, cf. [6,7,15]. Throughout
this paper, we always assume, for simplicity, that A
has the identity I . An element T in A is called self-
adjoint if T =T ∗ holds. Also, a self-adjoint element
T in A is called positive (and denoted by T¿ 0) if
there exists an element T0 in A such that T =T ∗

0 T0
where T ∗

0 is the adjoint element of T0. A positive ele-
ment T is called a projection if T =T 2 holds. LetA∗

be the dual Banach space of A. That is, A∗= {�: �
is a continuous linear functional onA} with the norm
‖·‖A∗(≡ sup{|�(T )|: ‖T‖A6 1}). (The linear func-
tional �(T ) is sometimes denoted by A∗ 〈�; T 〉A.)
De�ne the mixed state class Sm(A∗) such that
Sm(A∗)= {�∈A∗: ‖�‖A∗ =1 and �(T )¿ 0 for
all T¿ 0}. A mixed state � (∈Sm(A∗)) is called
a pure state if it satis�es that “�= ��1 + (1 − �)�2
for some �1; �2 ∈Sm(A∗) and 0¡�¡1” implies
“�= �1 = �2”. De�ne Sp(A∗)≡{�p ∈Sm(A∗): �p

is a pure state}, which is called a state space.
When A is a commutative C∗-algebra, that is,

T1 ·T2 =T2 ·T1 holds for all T1; T2 ∈A, by Gelfand

theorem (cf. [15]) we can put A=C(
), the al-
gebra composed of all continuous complex-valued
functions on a compact Hausdor� space 
. It is well
known that C(
)∗=M(
), i.e., the Banach space
composed of all regular complex-valued measures on

. And therefore, Sm(M(
))= {�∈M(
): �¿ 0;
‖�‖M(
) = 1}, which is denoted by M+1(
). Also,
it is clear that Sp(M(
))= {�! ∈M(
): �! is a
point measure at !∈
, i.e., M(
)〈�!; f〉C(
) =f(!)
(∀f∈C(
);∀!∈
)}, which is denoted byMp

+1(
).
And therefore, we have the identi�cation: 
3!↔
�! ∈M

p
+1(
). Thus, the compact Hausdor� space 


may be also called a state space.
As a natural generalization of Davies’ idea in quan-

tum mechanics (cf. [2]), a C∗-observable (or in short,
observable, fuzzy observable) O≡ (X;F; F) in a C∗-
algebraA is de�ned such that it satis�es
(i) X is a set, andF is the sub�eld of the power set

P(X ) (≡{�: �⊆X }),
(ii) for every �∈F; F(�) is a positive element in

A such that F(∅)= 0 and F(X )= I (where 0 is
the 0-element in A),

(iii) for any countable decomposition {�1; �2; : : : ;
�n; : : :} of �; (�; �n ∈F), it holds that �m(F(�))
= limN→∞ �m(

∑N
n=1 F(�n)) (∀�m ∈Sm(A∗)).

Also, if F(�) is a projection for every � (∈F),
a C∗-observable (X;F; F) is called a crisp C∗-
observable.

Remark 2.1 (Sample space). Let �m be a mixed
state, i.e., �m ∈Sm(A∗). Applying Hopf exten-
sion theorem, we can get the measure space
(X;F; �m(F(·))) such that �m(F(�))= �m(F(�))
for all �∈F, where F is the smallest �-�eld that
contains F. For simplicity, the �m(F(·)) is also de-
noted by �m(F(·)) or A∗〈�p; F(·)〉A. Also Axiom
1 (or Method 1) proposed later makes us call the
measure space (X;F; �m(F(·))) a sample space or a
probability space.

Let O≡ (X;F; F) be an observable in a commu-
tative C∗-algebra A (≡C(
)). Note that, for any
�xed � (∈F), the F(�) is a membership function
on 
, i.e., a continuous function on 
 such that
06 [F(�)](!)6 1 (∀!∈
). Thus, the F(·) will be
usually denoted by F(·), that is, [F(�)](!)=F�(!)
(∀�;∀!). And therefore, (X;F; F) is often denoted
by (X;F; F(·)) in a commutative C∗-algebra C(
).
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Let O≡ (X;F; F) be an observable in a C∗-algebra
A. Let Y be a set with the �eld G. Consider a mea-
surable map h : X →Y , i.e., h−1(�)∈F (∀�∈G).
Then we have the observable Oh ≡ (Y;G; F◦h−1) in
A, where (F ◦ h−1)(�)=F(h−1(�)) (∀�∈G). This
Oh is called the image observable of O concerning
the map h.
For each k =1; 2; : : : ; n, consider an observable

Ok ≡ (Xk;Fk ; Fk) in a C∗-algebra A. De�ne the×n
k=1Fk such as the smallest �eld (on ×n

k=1 Xk)
that contains ×n

k=1 �k; �k ∈Fk . An observable
O≡ (×n

k=1 Xk;×n
k=1Fk ; F) in A is called the

quasi-product observable of {Ok : k =1; 2; : : : ; n} if
it holds that Ohk =Ok (∀k =1; : : : ; n) where Ohk is
the image observable concerning the kth coordinate

map, i.e.,×n
j=1 Xj 3 (xj)nj=1

hk7→ xk ∈Xk . Note that the
existence and the uniqueness of the quasi-product
observable of {Ok : k =1; 2; : : : ; n} are not guaran-
teed in general. However, when Ok ; k =1; 2; : : : ; n,
commute, i.e., Fk(�k)Fk′(�k′)=Fk′(�k′)Fk(�k) for
all �k ∈Fk ; �k′ ∈Fk′ such that k 6= k ′, we can
construct F such that F(�1×�2× · · ·×�n)=
F1(�1)F2(�2) : : : Fn(�n). This kind of quasi-product
observable is called a direct product observable (or in
short, product observable), and denoted by×n

k=1Ok

(or (×n
k=1 Xk; ×n

k=1F; ×n
k=1 Fk)). In this paper we

always deal with direct product observables. How-
ever, it should be noted that various quasi-product
observables play important roles in measurement
theory (cf. [6–8]).
With any system S, a C∗-algebraA can be associ-

ated in which the fuzzy measurement theory (or more
generally, the system theory) of that system can be
formulated. A state of the system S is represented by
a pure state �p (∈Sp(A∗)), a quantity is represented
by a self-adjoint element Q in the C∗-algebra A.
Also, an observable is represented by a C∗-observable
O≡ (X;F; F) in the C∗-algebra A. The measure-
ment of the observable O for the system S with the
state �p is represented by MA(O; S[�p]) in the C∗-
algebraA. In particular, the measurement of a quasi-
product observable (resp. direct product observable)
is called a simultaneous measurement (resp. iterated
measurement).
The axiom presented below is analogous to (or, a

kind of generalization of) Born’s probabilistic inter-
pretation of quantum mechanics. We of course as-

sert that the axiom is a principle for all measure-
ments, i.e., classical and quantum measurements (cf.
[6,7]).

Axiom 1 (Measurement axiom). Consider a mea-
surement MA(O≡ (X;F; F); S[�p]) formulated in
a C∗-algebra A. Assume that the measured value
x (∈X ) is obtained by the measurementMA(O; S[�p]).
Then, the probability that the x (∈X ) belongs to a set
� (∈F) is given by �p(F(�)) (≡A∗〈�p; F(�)〉A)
(cf. Remark 2.1).

We introduce the following classi�cation in mea-
surement theory (cf. [6,7]):

measurement theory


classical measurement theory
(for classical systems),

quantum measurement theory
(for quantum systems),

where a C∗-algebra A is commutative or non-
commutative. Note that quantum measurement theory
is well known as a principle of quantum mechan-
ics (cf. [2,3]). Our interest in this paper is mainly
concentrated to classical systems. Therefore, in most
cases, it su�ces to consider that A=C(
).

Remark 2.2 (Several results derived from Axiom 1,
cf. [6–8]). We believe that this axiom dominates all
measurements, i.e., classical and quantum measure-
ments. In fact, as consequences of Axiom 1 (or, Meth-
ods 1 and 2 mentioned later), in [6,7] we clari�ed
several fundamental facts, for example, the justi�ca-
tion of “standard syllogism”, ergodic problem (i.e.,
the principle of equal weight in statistical mechanics),
the subjective foundation of Shannon’s entropy, the
errors in Heisenberg’s uncertainty relation and so on.
And furthermore, the relation between Kolmogorov’s
probability theory and Axiom 1 (or, Methods 1 and
2 mentioned later) was well discussed in [7]. The
probability space (X;F; �p(F(·))), for the �rst time,
acquires a reality under Axiom 1. Also, in [8] we
asserted that measurement theory, i.e., Axiom 1,
had great power of expression. Therefore, a good
translation from “natural language” into “system the-
oretical language” can be expected. We believe that
this is the essence of “fuzzy logic” (cf. Remark 4.6
later).
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Let MA(O≡ (X;F; F); S[�p]) be a measurement
formulated in a C∗-algebraA. Assume that
(]) we get the measured value x0 (∈X ) by the mea-

surement MA(O; S[�p]).
Then, we may also say that “x0 is the value of an
observable O for the system S with a state �p”.
Let O′ ≡ (X;F′; F ′) be an observable inA such that
F′ ⊆F and F(�)=F ′(�) (∀�∈F′). That is, O is
�ner than O′. Then, under the assumption (]), we
may also say that “x0 is the value of an observable
O′ for the system S with a state �p”. De�ne the
equivalence relation x1∼F′ x2 (x1; x2 ∈X ) such that
x1 ∈�⇔ x2 ∈� (∀�∈F′). When x0∼F′ x1, it is nat-
ural to consider that “x0 is the value of the observ-
able O′ for the state �p”⇔ “x1 is the value of the
observable O′ for the state �p”. For any x∈X , de-
�ne [x]F′ (⊆ X ) such that [x]F′ = {x′ ∈X : x∼F′ x′}.
Then we may also say that “[x0]F′ is the value of
the observable O′ for the state �p”. Also consider
a measurable map from X into Y (with the �eld G).
Thus, we get the �eldF′ ≡{h−1(�): �∈G} (⊆F).
Note that “h(x1)= h(x2)” implies that “x1∼F′ x2”.
Therefore, under the above assumption (]), we may
say that “h(x0) is the value of the image observable
Oh (≡ (Y;G; F(h−1(·))) for the state �p”.

Remark 2.3 (Measurement theory and statistics).
As mentioned in Remark 2.1, a measurement
MA(O≡ (X;F; F); S[�p]) always determines the
sample space (X;F; A∗〈�p; F(·)〉A). Here note
that the mathematical structure of the sample space
{A∗〈�p; F(�)〉A}�p∈Sp(A∗); �∈F is the same as that
of the conventional formulation of statistics (i.e.
{P(�; �)}�∈�; �∈F, where, for each � in a parameter
space �; P(·; �) is a probability measure on a mea-
surable space (X;F), cf. [16]). Therefore, there is a
good hope that statistics can be described in terms
of measurements. Also, this is precisely our motiva-
tion in this paper. Note that measurement theory has
a principle, i.e., Axiom 1, in which the relation be-
tween “measurement” and “probability” is declared.
On the other hand, the meaning of “probability” is
not clear in the conventional formulation of statis-
tics since “mathematics” can be always interpreted
by various ways. (Also, see the arguments appear-
ing below Method 1 later.) Following the common
knowledge of quantum mechanics, we believe that
any scienti�c statement including the term “prob-

ability” is not meaningful without the concept of
“measurement”.

Remark 2.4 (Possibility). In most cases of measure-
ments, we do not have the information concerning the
state �p of the systems S. Note that one of the main
topics in statistics is to infer the unknown state from
the measured value (cf. Section 3). Therefore, the
MA(O; S[�p]) is sometimes denoted by MA(O; S[∗])
when we want to stress the situation that the state
�p is unknown. The following statement (i) is clearly
equivalent to Axiom 1.
(i) Assume the fact that the measured value obtained

by MA(O≡ (X;F; F); S[∗]) belongs to � (∈F).
Then we can assert the following statement:
if [∗] = �p (i.e., MA(O; S[∗]) =MA(O; S[�p])),
then the probability that the fact (i.e., the mea-
sured value belongs to �) occurred is given by
A∗〈�p; F(�)〉A.

This statement (i) is usually represented as follows.
(ii) Assume the fact that the measured value ob-

tained by MA(O; S[∗]) belongs to � (∈F).
Then the possibility that [∗] = �p is given by
A∗〈�p; F(�)〉A.

This (ii) should be read as the abbreviation of the
above (i). In other words, the de�nition of “pos-
sibility” is given in the above (i). Therefore, three
statements (i.e., Axiom 1, the statements (i) and (ii))
are equivalent. Also, we must be careful for quantum
measurements since the “reduction of wave packet”
is usually considered to occur after the quantum mea-
surement. That is, the unknown state [∗] in the above
statement (i) (and therefore, (ii)) is the state before
the measurement (cf. Remark 3.1 later).

Remark 2.5 (Possibility and likelihood). Assume
that there exists a measure � on (X;F) and
f(·; �p)∈L1(
; �) (∀�p ∈Sp(A∗)) such that
�p(F(�))=

∫
� f(x; �p)�(dx) for all �∈F and

all �p in Sp(A∗). Then, even if �= {x} and
�p(F({x}) = 0) (∀�p ∈ Sp(A∗)) in the statement
(ii) of Remark 2.4, we may calculate as follows:

the possibility that [∗] = �p
1

the possibility that [∗] = �p
2
=

�p
1 (F({x}))
�p
2 (F({x}))

= lim
�→{x}

�p
1 (F(�))
�p
2 (F(�))

=
f(x; �p

1 )
f(x; �p

2 )
:
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In this sense (or, in the sense of “Radon–Nikod�ym
derivative”), we can use “likelihood function f(x; ·)”
instead of “possibility function A∗〈·; F(�)〉A”. In this
paper we are not concerned with “likelihood” since
we consider that basic ideas should be �rst described
in terms of “possibility”.

Next we introduce “subjective measurement”
MA(O; S(�m)), which is a mathematical symbol such
that �m is a mixed state, i.e., �m ∈Sm(A∗). The �m is
called a subjective state (or, statistical state, weight,
prior). Note that “subjective measurement” has no
reality in itself since the state of a system S is always
represented by a pure state �p and not a mixed state
�m (cf. Axiom 1). That is, we have no experiment that
tests Method 1 (presented below) directly. Therefore,
Method 1, i.e., “subjective measurement theory”, is
meaningless without a proper interpretation (cf. [7]).

Method 1 (Subjective measurement). Consider a
subjective measurement MA(O≡ (X;F; F); S(�m))
formulated in a C∗-algebra A. Then, we consider
that
(]) the “subjective probability” that x (∈X ), the

measured value by the subjective measurement
MA(O; S(�m)), belongs to a set � (∈F) is
given by �m(F(�)) (≡A∗〈�m; F(�)〉A).

Though a subjective measurement MA(O; S(�m))
is merely a mathematical symbol, it must not be un-
derestimated. In fact statistical mechanics is based
on Method 1 with a proper interpretation (i.e., “the
principle of equal weight in statistical mechanics”),
cf. [7]. Also, in [7] we showed that some objective
interpretation (based on Axiom 1) could always be
added to the subjective measurement MA(O; S(�m))
if it was needed. In other words, the “subjective
probability” in Method 1 can be characterized as a
frequency probability of the objective measurement
M⊗n

k=1A
(
⊗n

k=1O; S[⊗n
k=1�

p
k ]
) in a tensor C∗-algebra⊗n

k=1A, where �m ≈ (1=n)∑n
k=1 �

p
k for su�ciently

large n. Note that “probability space (X;F; P)” in
Kolmogorov’s probability theory (and consequently,
{P(�; �)}�∈�; �∈F in the conventional formulation
of statistics) is also a mathematical symbol. As
Kolmogorov himself said so in his famous book [11],
the statement SK : “The probability that an event
� (∈F) occurs is given by P(�)” is meaningless

without a proper interpretation. In this sense, the SK

and Method 1 are similar. To be compared with the
statement SK , Method 1 has a merit such that it has a
form like Axiom 1.
We also consider a mathematical symbol MA(O;

S[�p](�m)), which is called an objective and subjec-
tive measurement in A. That is, we consider that
MA(O; S[�p](�m))=MA(O; S[�p]) from the objec-
tive point of view, and MA(O; S[�p](�m))=MA(O;
S(�m)) from the subjective point of view. There-
fore, the phrase “measured value obtained by
MA(O; S[�p](�m))” in Method 1 is meaningful, that
is, it is interpreted as “measured value obtained by
MA(O; S[�p])”. By the same reason mentioned in
Remark 2.4, the MA(O; S[�p](�m)) is also written by
MA(O; S[∗](�m)). In this paper, a subjective measure-
ment MA(O; S(�m)) is chie
y used as the subjective
part of MA(O; S[�p](�m)). However, we must again
note that it is merely one of the interpretations of
Method 1.
The di�erence between “objectivity” and “subjec-

tivity” is rather delicate. The following example will
promote a better understanding of our theory.

Example 2.6 (Objective and subjective aspects of “at
random”). Suppose we have an urn that contains 10
balls; six blue and four red. Now we consider the
following two measurements:
(I) Consider the following measurement: that is,

“choose a ball at random from the urn, and
uninterruptedly look at the ball”.

(II) Choose a ball at random from the urn. Assume
that the information of the ball is unknown since
it is held in one’s �st. Here, consider the follow-
ing measurement: that is, “look at the ball”.

Our present problem is to formulate these two mea-
surements (I) and (II).

The above example is solved in what follows.
Consider the state space 
≈M

p
+1(
), in which

the state of a ball Bj (j=1; : : : ; 10) is repre-
sented. Therefore, we have the correspondence:
B≡{B1; : : : ; B10}3Bj 7→!0j ∈
. Since our interest
is concentrated to the set B, it su�ces to consider the
restricted state space 
≡{!01; : : : ; !010} (⊂
). That
is, we have the identi�cation: B 3Bj ↔!0j ∈
. Also
assume that Bj is blue (j=1; 2; : : : ; 6) and the others
are red. Therefore, we can de�ne the observable
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O≡ (X = {b; r};P(X ); F(·)) in C(
) such that

F{b}(!0j )=

{
1 if 16j66;

0 if 76j610;

and F{r}(!0j )= 1 − F{b}(!0j ). Here we of course
consider that “observing that the ball Bj is blue” ⇔
“getting the measured value ‘b’ by the measurement
MC(
)(O; S[�!0

j
])”. Thus, Axiom 1 says, for example,

that the probability that the measured value ‘b’ is ob-
tained by the measurement MC(
)(O; S[�!0

5
]) is given

by 1 (= �!05
(F{b})=F{b}(!05)).

(I) The system S (or precisely, S(I)) composed
of 10 balls is formulated in a tensor commutative
C∗-algebra

⊗10
j=1 C(
)=C(
10). (Recall many par-

ticles system in classical mechanics.) The state of the
system S is of course represented by a point mea-
sure

⊗10
j=1 �!0j

= �(!01 ; !02 ;:::; !010) in M
p
+1(


10)≈
10.

De�ne the observable Ô≡ (X = {b; r};P(X ); F̂ (·))
in C(
10) such that

F̂{b}(!1; !2; : : : ; !10)

= 1
10 (F{b}(!1) + F{b}(!2)+ · · ·+ F{b}(!10))

∀(!1; : : : ; !10)∈
10;

and F̂{r}=1 − F̂{b}. This Ô may be called “av-
erage observable” in C(
10). Now, we have the
measurement MC(
10)(Ô; S[�(!0

1
; !0
2
;:::; !0

10
)]
), which rep-

resents the situation (I), i.e., the objective view of
“at random”. Clearly, the (objective) probability that
a measured value ‘b’ [resp. ‘r’] is obtained by the
measurement MC(
10)(Ô; S[�(!0

1
; !0
2
;:::; !0

10
)]
) is given by

�(!01 ; !02 ;:::; !010)(F̂{b})= F̂{b}(!01; !
0
2; : : : ; !

0
10)=

6
10 [resp.

�(!01 ; !02 ;:::; !010)(F̂{r})= 4
10 ]:

(II) Assume that the ball chosen in the statement
(II) is Bj0 . Also note that the information of the j0 is
unknown. Therefore, there is a very good reason (cf.
[7]) to consider that the subjective state of the system
S (or precisely, S(II)) is represented by the uniform
weight �m

uni (∈M+1(
)), that is, �m
uni =

1
10

∑10
j=1 �!0j

.
Thus, we have the objective and subjective measure-
ment MC(
)(O; S[∗](�m

uni)). (Here the observer does
not know the fact that [∗] = �!0j0

:) Then the subjec-
tive probability that a measured value ‘b’ [resp. ‘r’] is

obtained by the measurement MC(
)(O; S[∗](�m
uni)) is

given by �m
uni(F{b})=

∫

 F{b}(!)�m

uni(d!)=
6
10 [resp.

�m
uni(F{r})=

4
10 ]:

3. Statistical inferences for states

In this section we study “statistical inferences for
states” in measurement theory. In other words, we
focus on the following problem:
(]) how to infer the unknown state [∗] (∈Sp(A∗))

from the measured data obtained by a measure-
ment MA(O; S[∗]) or MA(O; S[∗](�m)).

Also this should be of course compared to Fisher’s
method or Bayes’s method in statistics.
Let us begin with Fisher’s method. The statement

(ii) in Remark 2.4 gives the justi�cation to “maximum
likelihood function method” as follows (cf. Remark
2.5).
(M) When we know that the measured value by

a measurement MA(O≡ (X;F; F); S[∗]) be-
longs to �, there is a very good reason
to consider that the state [∗] of the sys-
tem S is equal to �p

0 (∈Sp(A∗)) such that
�p
0 (F(�))= max�p∈Sp(A∗) �p(F(�)).

Also, by the statement (i) in Remark 2.4 we get the
following test (T).
(T) Assume that �0 (∈F), disjoint sets H0 and H1

(⊆Sp(A∗)) satisfy that 0¡�p(F(�0))¡��
1 (∀�p ∈H0) and 0� 1 − �′¡�p(F(�0))6
1 (∀�p ∈H1) for some su�ciently small � and
�′. And assume the fact that the measured value
by a measurement MA(O; S[∗]) belongs to �0.
Here we see that, if [∗]∈H0, then the probabil-
ity that the fact occurred is less than �, that is,
the fact is a rare occurrence. Therefore, there is
a very good reason to consider that [∗] =∈H0.

Thus we consider that Fisher’s spirit is described
in terms of Axiom 1. The statement (M) (or (T))
is of course valid for quantum systems as well as
classical systems. However, as stated in Remark
2.4, we must note that the unknown state [∗] in the
statement (M) (or (T)) is the state before the mea-
surement (cf. Remark 3.1 below). Though it may be
one of the topics in quantum measurement theory,
our concern in this paper is concentrated to classical
systems.
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Remark 3.1 (The “collapse of the wave pocket” in
quantum mechanics). The “collapse of the wave
pocket” is the most signi�cant and unsolved prob-
lem in quantum mechanics. That is, some physicists
consider that the state [∗] (∈Sp(A∗)) of the sys-
tem S changes to some state [∗′] (∈Sp(A∗)) after
we know the measured value by the measurement
MA(O≡ (X;F; F); S[∗]). Though there is a very
good reason that they consider so, this produces
several famous paradoxes such as Schr�odinger’s
cat. Note that the above (M) also includes a para-
dox if we consider that the �p

0 in the above (M)
approximates [∗′]. However, in spite of the para-
dox, some physicists may assert so. Their opinion
must not be denied since it is unsolved in quantum
mechanics.
Next, we review Bayes’s method (proposed in [7],

i.e., the formula (5.2) in [7]) in measurements. Let
O≡ (X;F; F(·)) be an observable in a commutativeC∗-
algebra C(
). Consider an objective and subjective
measurementMC(
)(O; S[∗](�m)). Then the following
statement is justi�ed by Method 1 (or Method 2 pre-
sented in the next Section 4).
(B) Assume the fact that the measured value by

the measurement MC(
)(O; S[∗](�m)) belongs
to � (∈F). Then, from the subjective point of
view, we consider that the new subjective state
of the system S is given by �m

new (∈M+1(
))
such that

�m
new(B) =

∫
B F�(!)�m(d!)∫

 F�(!)�m(d!)

(∀B∈B
; the Borel �-�eld of 
).

That is, there is a very good reason to consider
that the state [∗] is approximated by �m

new. This (B)
of course corresponds to Bayes’s method in statistics.
Therefore, we see that Bayes’s spirit is described in
terms of Method 1.
For completeness, we add the outline of the mea-

surement theoretical justi�cation of (B) in what
follows. Let O1≡ (Y;G; G(·)) be any observable
in C(
). And consider the iterated measurement
MC(
)(O×O1; S[∗](�m)). Applying Method 1 to
MC(
)(O×O1; S[∗](�m)) and MC(
)(O1; S[∗](�m

new))
respectively, we can expect that the new subjec-
tiv state �m

new (∈M+1(
)) satis�es the following

condition:∫

 F�(!)G�(!)�m(d!)∫


 F�(!)�m(d!)

=
∫


G�(!)�m

new(d!) (∀�∈G):

(For the arguments about “conditional probability”,
see [7].) Thus we get (B) since O1 is arbitrary.
Now we have Fisher’s method and Bayes’s method

in measurement theory. Thus we now study some sta-
tistical examples in terms of measurements. Though
these examples are quite simple (i.e., X and
 are sup-
posed to be �nite sets), we believe that these do not
miss the essence of statistics.

Example 3.2 (Urn problem). Let Uj; j=1; 2; 3; be
urns that contain su�ciently many colored balls as
follows:

“blue” “green” “red” “yellow”
U1: 50% 30% 10% 10%
U2: 30% 30% 30% 10%
U3: 20% 20% 40% 20%

Put U = {U1; U2; U3}. By the same argument in
Example 2.6, we consider the state space 
 (≡{!1;
!2; !3}) with the discrete topology, which is
identi�ed with U , that is, U 3Uj ↔!j ∈
≈
M

p
+1(
). De�ne the observable O≡ (X = {b; g; r; y};

P(X ); F(·)) in C(
) by the usual way. That is,
F{b}(!1)= 5

10 ; F{b}(!2)= 3
10 ; F{y}(!3)= 2

10 and so
on. (Recall the “average observable” Ô in Exam-
ple 2.6 (I), i.e., the objective view of “at random”.)
Then, we have the measurement MC(
)(O; S[∗]). We
of course consider that, for example,
(]) “choosing a ball at random from the urn Uj,

and observing that the ball is blue” ⇔ “get-
ting the measured value ‘b’ by the measurement
MC(
)(O; S[�!j ])”.
Next consider the iterated measurement MC(
)

(×2
k=1O ≡ (X 2; P(X 2); ×2

k=1 F); S[∗]) where

(×2
k=1 F)�1×�2 (!)=F�1 (!) · F�2 (!). Also, assume

that the measured value (r; b) is obtained by the

iterated measurement MC(
)(×2
k=1O; S[∗]). Apply-

ing Fisher’s method (M), we get the conclusion
as follows. Put E(!)=F{r}(!)F{b}(!). Clearly it
holds that E(!1) = 1 × 5=102 = 0:05; E(!2) = 3 ×
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3=102 = 0:09 and E(!3)= 4× 2=102 = 0:08. There-
fore, there is a very good reason to consider that
[∗] = �!2 , that is, the unknown urn is U2.

Example 3.3 (Continued from Example 3.2). Let Q
be a quantity in C(
), i.e., Q :
 (≈M

p
+1(
))→R

is a real valued continuous function on 
. (For
the relation between quantities and observables, see
Section 4.) For example, we may consider what
follows. Assume that the weight of a blue ball is
given by 10 (gram), and green 20, red 30 and yellow
10. (Thus, we can de�ne the map w :X →R such
that w(b)= 10; w(g)= 20; w(r)= 30 and w(y)= 10:)
Therefore, the average weight Q(!1) of the balls in
the urn U1 is given by 15 (= (10× 50 + 20× 30 +
30× 10 + 10× 10)=100), and similarly, Q(!2)= 19
and Q(!3)= 20. Now we have the following
problem.
(]) How do we infer Q(∗) from the measured value

(r; b) obtained by the iterated measurement
MC(
)(×2

k=1O; S[∗])?
This problem is easily solved as follows. Since we

inferred that [∗] = �!2 (↔!2) in Example 3.2, we can
immediately conclude that Q(∗)=Q(!2)= 19. Also
note that the map w :X → R is not essential in this
argument, that is, it is the preparation for Example 4.3
later.

Remark 3.4 (Parameter space). In the above exam-
ple, some may use a parameter space�≡{15; 19; 20}
instead of the state space 
. This is not wrong if the
parameter space � is regarded as a state space under

the identi�cation:
3!j
Q7→ Q(!j)∈�, that is, C(�)

is C∗-isomorphic to C(
). As stated in Remark 4.6
later, measurement theory is a part of system the-
ory. Therefore, it has the system theoretical concepts,
for example, “state space”, “observable”, “quantity”,
“measurement” and so on. Recall the statements ap-
pearing above Axiom 1, and note that these concepts
were described in terms of a C∗-algebraA, in which
the system is formulated. Thus, if we want to use the
word “parameter space” in order to represent a cer-
tain non-mathematical concept, it should be de�ned in
terms of the C∗-algebraA. We consider that the word
“parameter space”, as well as “probability space”, is
not clear in the conventional formulation of statistics
(cf. Remark 2.3).

Example 3.5 (Bayes’s method). Next study the
problem (]) in Example 3.3 from the subjective
point of view. Consider an objective and subjective

measurement MC(
)(×2
k=1O; S[∗](�m

0 )). For exam-
ple, assume that �m

0 = �m
uni, i.e., �m

uni =
1
3

∑3
j=1 �!j

on 
. When we get the measured value (r; b) by

the measurement MC(
)(×2
k=1O; S[∗](�m

0 )), we in-
fer, by Bayes’s method (B), that the new state is
�m
new = 1=(5+9+8)(5�!1 + 9�!2 + 8�!3 ). Thus there
is a very good reason to consider that Q(∗) is approx-
imated by∫



Q(!)�m

new (d!)

=
15:5 + 19:9 + 20:8

5 + 9 + 8
=18:45 : : : :

Now let us provide another example, which is es-
sentially the same as Example 3.2. In order to appre-
ciate measurement theory, we must practice a lot of
examples.

Example 3.6 (At a gun shop). LetG≡{G1; : : : ; G50}
be a set of guns in a gun shop. Assume that

the percentage of “hits of a gun Gj”

=


80% if 16j630;

70% if 316j640;

10% if 416j650:

Assume the following situation (i)+ (ii):
(i) Some one picks up a certain gun Gj0 from G . He

does not know the information concerning the j0.
(ii) He shoots the gun Gj0 three times. First and sec-

ond he hits the mark, and third he misses the
mark.

Our present problem is to formulate the measure-
ment (i)+ (ii).

The above example is solved in what follows. Let

 be a state space, which is identi�ed with the set G .
That is, we have the identi�cation: G 3Gj ↔!j ∈
.
De�ne the observable O≡ (X = {0; 1};P(X ); F(·)) in
C(
) such that

F{1}(!j)=


0:8 if 16j630;

0:7 if 316j640;

0:1 if 416j650
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and F{0}(!j)= 1 − F{1}(!j). Of course we consider
that
(]) “hit the mark by a gun Gj0”⇔ “get the measured

value 1 by the measurement MC(
)(O; S[�!j0
])”.

Here, consider the (three times) iterated measurement

MC(
)(×3
k=1O = (X 3; P(X 3); ×3

k=1F); S[�!j0
]) in

C(
) such that

(×3
k=1F)�1×�2×�3 (!)=F�1 (!)F�2 (!)F�3 (!)

(∀�1×�2×�3 ∈P(X 3); ∀!∈
):

Clearly, the above statement (ii) in Example 3.6 im-
plies that the measured value (1; 1; 0) is obtained by

MC(
)(×3
k=1O; S[∗]). (The observer does not know

that [∗] = �!j0
:)

By a simple calculation, we see

F{1}(!j)F{1}(!j)F{0}(!j)

=


0:128 if 16j630;

0:147 if 316j640;

0:009 if 416j650:

Therefore, by Fisher’s method (M), there is a very
good reason to consider that 316j0640.

Remark 3.7 (Continued from Example 3.6. Test).
Let MC(
)(×3

k=1O; S[∗]) be as in the above argu-
ments. De�ne the map T :X 3≡{0; 1}3→{0; 1} such
that

T (x1; x2; x3)=

{
1 if x1 + x2 + x3¿2;

0 if x1 + x2 + x3¡2:

Hence, we get the image observable OT =({0; 1};
P({0; 1}); (×3

k=1 F)T−1(·)) in C(
). Put �0 =
T−1({1}); H0 = {�!j : 416j650} and H1 = {�!j :
16j630}. Then, we see that

M(
)〈�!j ; (×3
k=1F)T−1({1})〉C(
)

=

{
(0:1)3 + 3(0:1)2(0:9)=0:028 if !j ∈H0;

(0:8)3 + 3(0:8)2(0:2)=0:896 if !j ∈H1:

Clearly, the hypothesis (ii) in Example 3.6 implies
that the fact “(1; 1; 0)∈T−1({1})≡�0” occurs, that
is, the value of the observable OT for the system with

the state [∗] is equal to 1. Then we can say, by Fisher’s
method (T), that
(]) if [∗]∈H0, the probability that the fact (i.e.,

“(1; 1; 0)∈T−1({1})”) occurred is given by
0.0271.

That is, if [∗]∈H0, we can say “A very rare case
occurred”. Therefore, there is a very good reason to
consider that [∗] =∈H0, that is, 16j0640.

Remark 3.8 (Continued from Remark 2.3). All ex-
amples (except Examples 2.6 and 4.2) in this paper
may be easy for statisticians. That is because the math-
ematical structure {A∗〈�p; F(�)〉A} is the same as
that of statistics, i.e., {P(�; �)}. However, it should
be noted that measurement theory has other aspects
(cf. Remark 2.2). Also, we believe that statistics must
not be one of the �elds of mathematics. Thus we do
not start from “Kolmogorov’s probability theory” but
“measurement”. All results in this section are conse-
quences of Axiom 1 or Method 1. Therefore, we con-
clude that Fisher’s and Bayes’s spirits are described
in terms of measurements.

4. Approximate measurements for quantities

In this section we study “approximate measure-
ments for quantities” in measurement theory, which
corresponds to “estimation under loss function” in
statistics. For this, we must study the concept of
“measurement error”, which was �rst introduced in
the formulation of “Heisenberg’s uncertainty relation”
(cf. [7]).
In measurement theory, every measurement is sup-

posed to be exact, that is, it does not have the concept
of “error” in itself. Assume that we hope to know the
value x0 of an observable O≡ (X;F; F) for a system
with the state �p, but we cannot conduct the mea-
surement MA(O; S[�p]). Therefore, we may take an-
other measurementMA(O′ ≡ (X;F; F ′); S[�p]) instead
ofMA(O; S[�p]). When we get the measured value x1
by the measurement MA(O′; S[�p]), we may regard
the x1 as the value x0 of the observable O for the state
�p. Under this situation, there is a reason to consider
that the “distance” between x0 and x1 can be regarded
as the measurement error. Also,MA(O′; S[�p]) may be
called an approximate measurement ofMA(O; S[�p]).
Also, in this situation, we may be concerned with
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the subjective measurement rather than the (objective)
measurement since the state �p is unknown in general.
In the above arguments, we usually assume that

the observable O is a crisp one, or a quantity. Note
that a C∗-algebra does not have su�cient projections
in general. For example, the C([0; 1]) has only two
projections, i.e., the constant functions 0 and 1. There-
fore, we now introduce the W ∗-algebraic formulation
of measurements (cf. [7]). If we are concerned with
classical systems, we can say that the C∗-algebraic
formulation is topological, on the other hand, the
W ∗-algebraic formulation is measure theoretical.
Let N be a W ∗-algebra (i.e., von Neumann al-

gebra), that is, N is a C∗-algebra with the predual
Banach spaceN∗ (i.e.,N=(N∗)∗). The linear func-
tional �(T ) (i.e., a continuous linear functional onN
in the sense of weak∗-topology �(N;N∗)) is also de-
noted by N∗〈�; T 〉N. Then, we can de�ne the normal
state-class Sn(N∗) such as

Sn(N∗)≡ {�∈N∗: ‖�‖N∗ =1 and �¿0

(i:e:; �(T ∗T )¿0 for all T ∈N)}:

The element � of Sn(N∗) is called a normal
state. The B(V ), the space of bounded linear op-
erators on a Hilbert space V , is a typical non-
commutative W ∗-algebra with the predual space
Tr(V ), the space of trace operators. And we see that
Sn(B(V )∗)=Tr+1(V ), i.e., the space of density op-
erators. Also, any commutative W ∗-algebra N is
represented by L∞(
; �), cf. [15]. Of course its pre-
dual space is L1(
; �). Therefore, Sn(L∞(
; �)∗)=
L1+1(
; �)≡{�∈L1(
; �): �¿0;

∫

 �(!)�(d!)= 1},

i.e., the space of density functions. The 
 is also
called a state space.
Let N be a W ∗-algebra. A W ∗-observable (or in

short, observable) O≡ (X;F; F) inN is de�ned such
that it satis�es that
(i) (X;F) is a measurable space, that is, F is a

�-�eld on X ,
(ii) for every �∈F; F(�) is a positive element in

N (i.e., 06F(�)∈N) such that F(∅)= 0 and
F(X )= I , where 0 is the 0-element and I is the
identity element inN, and

(iii) for any countable decomposition {�j}∞j=1 of
�; (�j; �∈F); F(�) =

∑∞
j=1 F(�j) holds in

the sense of the weak∗-topology �(N;N∗).

If F(�) is a projection for every � (∈F), a
W ∗-observable (X;F; F) in N is called a crisp
W ∗-observable.
Let R and B be the real line and the Borel �-�eld

respectively. A crispW ∗-observable Q≡ (R;B; G) in
a W ∗-algebraN is called a quantity inN. Consider
quantum systems, that is, assume that N=B(V ).
Then, by the spectral representation theorem, we
have the identi�cation: Q≡ (R;B; G)↔ ∫

R �G(d�),
i.e., (unbounded) self-adjoint operator on a Hilbert
space V , that is, “quantity”= “self-adjoint oper-
ator”. Next, consider classical systems, that is,
N=L∞(
; �). Then, we have the identi�ca-
tion: Q≡ (R;B; G(·))↔

∫
R �Gd�(!). Note that

the
∫
R �Gd�(·) is equal to a measurable function

Q :
→R such that G�(!)= �{!′∈
: Q(!′)∈�}(!)
(∀!∈
;∀�∈B), where �B; B (⊆
), is a charac-
teristic function on 
, i.e., �B(!)= 1; (!∈B); =0;
(! =∈ B). Therefore, we can see that “quantity”= “real
valued measurable function on 
” in classical mea-
surement theory.
Let O≡ (X;F; F) be a W ∗-observable in N and

let �∈ Sn(N∗). Then, the symbol MN(O; S(�)) is
called a subjective W ∗-measurement (or in short,
W ∗-measurement) in N. And the normal state � is
called a subjective state. Also, the measure space
(X;F; �(F(·))) is called a sample space.
The following “method” is a W ∗-algebraic version

of Method 1, cf. [7]. Therefore, it should be used like
Method 1.

Method 2 [W ∗-measurement]. Consider a W ∗-
measurement MN(O≡ (X;F; F); S(�)) in a W ∗-
algebraN. Then, we consider that
(]) “subjective probability” that x (∈X ); the mea-

sured value obtained by the W ∗-measurement
MN(O; S(�)), belongs to a set � (∈F) is given
by �(F(�)) (≡N∗〈�; F(�)〉N).

Now let us de�ne “measurement error” in what
follows. Let Q≡ (R;B; G) be a crisp W ∗-observable
(i.e., quantity) in N. Let O≡ (R;B; F) be a
W ∗-observable in N such that Q andO commute.
Let Q×O≡ (R2;B2; G×F) be the product observ-
able of Q and O. Consider the iterated measure-
ment MN(Q×O; S(�)). According to Method 2,
the (subjective) probability that the measured value
(�1; �2) (∈R2) belong to �1×�2 (∈B2) is given by
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�((G×F)(�1×�2)). Then we have the following
de�nition.

De�nition 4.1 (Measurement error; cf. Ishikawa [7]).
Assume the above notations. And assume the situation
that we hope to approximate the value �1 of the quan-
tity Q by the value �2 of the observable O, that is,
O is the approximation of Q. Then the measurement
error, �(MN(Q×O; S(�))), is de�ned by

�(MN(Q×O; S(�)))

=
[ ∫ ∫

R2
|�1 − �2|2�((G×F) (d�1 d�2))

]1=2
:

This is also called the distance between Q and O con-
cerning �.

Let Q≡ (R;B; G) and O≡ (X;F; F) be a quantity
and a W ∗-observable in a W ∗-algebra N, respec-
tively. Consider the measurable map h :X →R, and
the image observable Oh ≡ (R;B; F(h−1(·))) in N.
Also assume that Q and Oh commute. Thus, the dis-
tance between Q and Oh (concerning �∈Sn(N∗))
is de�ned by �(MN(Q×Oh; S(�))) as in the above
de�nition. Now, we have the following problem:
(]) how to choose a proper image observableOh (i.e.,

O and h) as the approximation of Q.
Our interest in this section is concentrated to the prob-
lem (]). Note that this (]) is entirely di�erent from
Fisher’s and Bayes’s spirits in Section 3, that is, how
to infer the unknown state from the measured data ob-
tained by a measurement.
Concerning the above problem (]), we can state

Heisenberg’s uncertainty relation in what follows.

Example 4.2 (Heisenberg’s uncertainty relation;
cf. [4,5,7]). Let Q1 and Q2 be a position quantity,
and a momentum quantity, respectively (i.e. Q1 and
Q2 are self-adjoint operators on a Hilbert space V
satisfying that Q1Q2−Q2Q1 = i˜; ˜ is the Plank
constant). As mentioned before, we identify Qi with
the spectral measure Qi ≡ (R;B; Gi) in B(V ), i.e.,
Qi=

∫
R �Gi(d�). Since Q1 and Q2 do not commute,

the quasi-product observable does not exist. There-
fore, consider an observable O≡ (X;F; F) in B(V )
and measurable maps hi :X →R; (i=1; 2), and de-
�ne the image observables Ohi ≡ (R;B; F(h−1i (·)))
in B(V ). And furthermore, assume the conditions:

(i)
∫
R �〈 ; Gi(d�) 〉V =

∫
R �〈 ; F(h−1i (d�)) 〉V

(∀ ∈ ⋂2
i=1“the domain of Qi”), (ii) Qi and Ohi

commute. Then we get the following inequality:

�(MB(V )(Q1×Oh1 ; S(�)))

×�(MB(V )(Q2×Oh2 ; S(�)))¿˜=2

for all �∈Tr+1(V ):

This is just Heisenberg’s uncertainty relation, which
was discovered by Heisenberg in the famous thought
experiment of 
-rays microscope (cf. [14]).

The following example is a main part of this section.
The reader should �nd “estimation under loss function
in statistics” in the following example.

Example 4.3 (Continued from Examples 3.2, 3.3 and
3.5 “Urn problem”). Let MC(
)(×2

k=1O; S[∗](�m
0 ))

and Q :
→R be as in Example 3.5. That is,
O=(X = {b; r; w; y};P(X ); F(·)) in C(
) (≡C({!1;
!2; !3})) and �m

0 ∈M+1(
). Consider a measure
� on 
, for example, �({!j})= 1 (j=1; 2; 3). De-
�ne the W ∗-observable O in L∞(
; �) such that
O=O, and de�ne the normal state � (∈ L1+1(
; �))
such that �m

0 (B)=
∫
B �(!)�(d!) for all B (⊆
).

Then, we can identifyMC(
)(×2
k=1O; S[∗](�m

0 )) with

ML∞(
; �)(×2
k=1O; S(�)). Note that Q is equivalent

to the crisp observable Q≡ (R;B; GQ) in L∞(
; �)
such that GQ

� (!)= �{!′∈
: Q(!′)∈�}(!) for all �∈B
and all !∈
. De�ne the map h :X 2 → R such that

h(x1; x2) = 1
2 (w(x1) + w(x2))

(∀(x1; x2)∈X 2≡{b; r; w; y}2); (4.1)

where w(b)= 10; w(g)= 20; w(r)= 30 and w(y) =
10 (cf. Example 3.3). Consider the image observ-

able (×2
k=1O)h ≡ (R;B; F̂ = (×2

k=1 F)h−1(·)).

Then, �(ML∞(
; �)(Q× (×2
k=1O)h; S(�))), the dis-

tance between Q and (×2
k=1O)h concerning �, is

calculated as

�(ML∞(
; �)(Q× (×2
k=1O)h; S(�)))

=
[ ∫ ∫

R2
|�1 − �2|2 �((GQ × F̂) (d�1 d�2))

]1=2
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=

 3∑
j=1

∑
(x1 ; x2)∈X 2

�(!j)|Q(!j)− h(x1; x2)|2

×F{x1}(!j)F{x2}(!j)

]1=2
= [22:5�(!1) + 34:5�(!2) + 40�(!3)]

1=2 : (4.2)

Therefore, we see that (4:2)6
√
40 ≈ 6:32 for all

�∈L1+1(
; �). Now we can also answer the ques-
tion (]) in Example 3.3. That is, Q(∗)= 1

2 (w(r) +
w(b))= (30+10)=2=20, though it of course includes
the error 6:32.
The map h :X n →R, (n=2), in (4.1) may be cho-

sen by the hint of “the law of large numbers”. That is,
if n is su�ciently large, the map h :X n →R (de�ned
by h(x1; : : : ; xn)= (1=n)

∑n
k=1 w(xk)) has a proper

property, i.e., limn→∞ �(ML∞(
; �)(Q× (×n
k=1O)h;

S(�)))= 0 for all �∈L1+1(
; �). However, there are
several ideas for the choice of h. Let Q≡ (R;B; G)
and O≡ (X;F; F) be a quantity and W ∗-observable
in a W ∗-algebra N, respectively. For each i=1; 2,
consider a measurable map hi :X →R, and the im-
age observable Ohi ≡ (R;B; F(h−1i (·))) in N. Also
assume that Q and Ohi commute. When it holds
that

�(MN(Q×Oh1 ; S(�)))6�(MN(Q×Oh2 ; S(�)))

∀ �∈Sn(N∗); (4.3)

we say that Oh1 is better than Oh2 as the approxima-
tion of Q. Also, Oh2 is called admissible as the ap-
proximation of Q, if there exists no h1 that satis�es
(4.3) and the following condition:

�(MN(Q×Oh1 ; S(�0)))¡�(MN(Q×Oh2 ; S(�0)))

for some �0 ∈Sn(N∗):

As a well-known result concerning “admissibility”,
we mention the following example, which is also the
preparation of Remark 4.5 later.

Example 4.4 (Gaussian observable). Let O≡
(R;B; F(·)) be a “Gaussian observable” in N≡

L∞(R×R+; d� d�), that is,

F�(�; �) =
1√
2��2

∫
�
exp

(
− (u− �)2

2�2

)
du

(∀(�; �)∈R×R+≡R×{�: �¿0};∀�∈B):

Consider the quantity Q :R×R+→R such that
Q(�; �)= � (∀(�; �)∈R×R+), which is identi-
�ed with the observable Q≡ (R;B; GQ

(·)), where

GQ
� (�; �)= ��(�). Consider the product observ-
able ×n

k=1O≡ (Rn;Bn;×n
k=1 F(·)) in L∞(R×R+;

d� d�). De�ne the map h :Rn →R such that

Rn 3 (�1; : : : ; �n)
h7→ ((�1 + · · ·+ �n)=n)∈R. Then, it

is well known (cf. [12]) that (×n
k=1O)h is admissi-

ble as the approximation of Q. In comparison with
Remark 3.4, the state space R×R+ may be iden-
ti�ed with the (parameterized) set of uncountable
in�nite urns, which contain su�ciently many balls
with various weights.
Here let us add the following remark, which will

also promote a better understanding of our assertion.

Remark 4.5 (Fundamental observables in statistics).
In measurement theory, the discoveries of fundamen-
tal (or, useful) observables should be estimated very
much. For example, “position quantity” and “mo-
mentum quantity” are fundamental in both classical
and quantum mechanics. Also, we have Glauber–
Sudarshan observable (i.e., observable on phase
space) in semi-classical mechanics, cf. [2,3]. And
also, “fuzzy logic” has fuzzy numbers observables
(e.g., Lukasiewicz observable, cf. [8]). Therefore, if
statistics is a certain aspect of measurements, we may
�nd “fundamental observables” in statistics. However
this has been already solved. That is, as mentioned
in Remark 3.2 and Example 4.4, “Gaussian distri-
bution” is induced by “Gaussian observable” There-
fore, statistics already has useful observables, i.e.,
“Gaussian observable”, “Poisson observable” and
so on.

Though we focused on only “statistical inferences”
in this paper, we are convinced that all other methods
in statistics can be formulated in terms of measure-
ments. For example, see [10], in which “factor anal-
ysis” is formulated in measurement theory. Also, see
the lecture note [9], in which our recent and new re-
sults are summarized.
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Lastly let us mention “fuzzy logic” since our orig-
inal motivation of this paper is to clarify the con-
fusion between “fuzzy logic” and statistics. Though
there may be other opinions, our opinion for “fuzzy
logic” is presented below.

Remark 4.6 (Fuzzy logic, cf. Ishikawa [8]). In this
paper we were not concerned with the dynamical
properties of systems. This is of course impor-
tant. Motivated by quantum mechanics, i.e., “quan-
tum mechanics”= “Born’s measurement axiom” +
“Heisenberg’s kinetic equation”, in [7] we proposed
the viewpoint of “mechanics” such as “mechanics” =
“measurement” + “kinetic equation”. System theory
is usually considered to be modeled on mechanics.
Therefore, if we use the terms of system theory, this
viewpoint is represented as follows:

“(dynamical) system theory”

= “measurement” + “the rule of time evolution”:

(4.4)

Here, “the rule of time evolution” may be extended to
“the rule of the relation among systems” if we con-
sider “general system theory” rather than “dynamical
system theory” The system theory (4.4) is regarded as
a mechanical approach to an understanding of (non-
physical) phenomena. In this sense, the system the-
ory (4.4) is an epistemology, or a philosophy, which
may be called “mechanical world view”. In [8], we as-
serted that the system theory (4.4) had great power of
expression. Namely, a good translation from “natural
language” into “system theoretical language” can be
expected. We believe that this fact is the essence of
“fuzzy logic” since the translation changes “fuzzy (or,
loose) statements” to “system theoretical statements”.
That is, we consider that “fuzzy logic” is mainly re-
lated to the following aspect of measurements:
(]) how to translate a statement in a natural language

into a statement in measurement theory, or more
generally, in the system theory (4.4),

which is a kind of modeling problem in a broad sense
(cf. [1] or [17], in which similar spirits can be found).
Since statements in a natural language are rather “log-
ical” or “qualitative”, this (]) may be also considered
as the logical aspect of measurements. For example,
several “syllogisms” were shown in [6]. Note that the

above (]) is not mathematical but system theoretical.
As emphasized here and there in this paper, we believe
that “measurement” is the most fundamental concept
in science. Therefore, we do not start from “mathemat-
ics” (e.g., “Kolmogorov’s probability theory”, “math-
ematical logic”, etc.) but “measurement”. From the
mathematical point of view, it is of course desirable
that some mathematicians make “mathematical fuzzy
logic” motivated by the logical aspect of measure-
ments. In fact, “quantum logic” is a good mathemat-
ical theory, which was created by the hint of “Born’s
quantum measurement axiom”. Also, in general we
consider that “fuzzy system theory” is characterized
as the study concerning grade quantities (i.e., mem-
bership functions) in the system theory (4.4).

5. Conclusions

The purpose of this paper was to propose a mea-
surement theoretical formulation of statistics, that
is, to understand or characterize statistics as one
of the aspects of measurement theory. In Section
3 we showed that Fisher’s and Bayes’s spirit was,
respectively, described in objective and subjective
measurement theory. Also, in Section 4 we character-
ized “estimation under loss function in statistics” as
“approximate measurements for quantities” in mea-
surement theory. Since two main topics in statistics,
i.e., “Fisher’s and Bayes’s methods” and “estimation
under loss function”, could be described in terms
of measurements, we may conclude that statistics
is a certain aspect of measurement theory. That is,
we consider that statistics is mainly related to the
following aspect of measurement theory:
(]) how to derive some useful information from the

measured data obtained by a measurement.
This viewpoint for statistics seems to be impor-
tant. That is because it bridges the gap between
statistics and the other aspects of measurements (cf.
Remark 2.2). For example, there seems to be some
confusion between statistics and “fuzzy logic” (cf.
[13]). It is clear that this confusion cannot be solved
by comparing Kolmogorov’s probability theory (or,
the conventional formulation of statistics) with “math-
ematical fuzzy logic”. Comparing the above (]) with
the (]) in Remark 4.6, we can immediately clarify
the confusion.
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As seen in Remark 4.6, measurement theory is in-
dispensable for “fuzzy logic”. On the other hand, from
the practical point of view there may be some reason to
consider that measured data can be analyzed without
the knowledge of “measurements”. In fact, statistics
has been developing without the concept “measure-
ments”. However, as mentioned in Remarks 2.3 and
3.4, we consider that the conventional formulation of
statistics is not su�cient. From the scienti�c point of
view, we believe that measurement theory promotes a
deep understanding of statistics.

Acknowledgements

I am grateful to Professors M. Sibuya, N. Shinozaki,
R. Shibata and T. Iida in Keio University. From
statistician’s standing point, they gave me valuable
suggestions.

References

[1] M. Black, Reasoning with loose concepts, Dialogue 2 (1963)
1–12.

[2] E.B. Davies, Quantum Theory of Open Systems, Academic
Press, New York, 1976.

[3] A.S. Holevo, Probabilistic and Statistical Aspects of Quantum
Theory, North-Holland, Amsterdam, 1982.

[4] S. Ishikawa, Uncertainty relations in simultaneous
measurements for arbitrary observables, Rep. Math. Phys. 29
(3) (1991) 257–273.

[5] S. Ishikawa, Uncertainties and an interpretation of
nonrelativistic quantum theory, Internat. J. Theoret. Phys. 30
(4) (1991) 401–417.

[6] S. Ishikawa, Fuzzy inferences by algebraic method, Fuzzy
Sets and Systems 87 (1997) 181–200.

[7] S. Ishikawa, A quantum mechanical approach to a fuzzy
theory, Fuzzy Sets and Systems 90 (1997) 277–306.

[8] S. Ishikawa, Fuzzy logic in measurements, Fuzzy Sets and
Systems 100 (1998) 291–300.

[9] S. Ishikawa, Fundamentals of system theory (in
preparation). This will be submitted to Keio Science
and Technology Reports. For further information, see
http://www.math.keio.ac.jp/˜ishikawa.

[10] S. Ishikawa, T. Iida, A system theoretical characterization of
factor analysis, EUFIT’98 in Aachen (1998), to appear.

[11] A. Kolmogorov, Foundations of Probability (transl.), Chelsea,
New York, 1950.

[12] E.K. Lehmann, Theory of Point Estimation, Wiley,
New York, 1983.

[13] D. McNeill, P. Preiberger, Fuzzy Logic, Simon and Schuster,
New York, 1993.

[14] J. von Neumann, Die Mathematischen Grundlagen Der
Quantenmechanik, Springer, Berlin, 1932.

[15] S. Sakai, C∗-algebras and W∗-algebras, Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 60, Springer,
Berlin, 1971.

[16] A. Wald, Statistical Decision Functions, Wiley, New York,
1950.

[17] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965)
338–353.


