6.3(1): Population mean (Confidence interval )
Consider the classical basic structure:
\begin{align}
[ C_0(\Omega ) \subseteq L^\infty (\Omega, \nu ) \subseteq B(L^2 (\Omega, \nu ))]
\end{align}
Fix a positive number $\alpha$ such that $0 < \alpha \ll 1$, for example, $\alpha = 0.05$.
Example6.7 Consider the simultaneous normal measurement ${\mathsf M}_{L^\infty ({\mathbb R} \times {\mathbb R}_+)}$ $({\mathsf O}_G^n = ({\mathbb R}^n, {\mathcal B}_{\mathbb R}^n, {{{G}}^n}) ,$ $S_{[(\mu, \sigma)]})$ in $L^\infty({\mathbb R} \times {\mathbb R}_+)$. Here, the simultaneous normal observable ${\mathsf O}_G^n = ({\mathbb R}^n, {\mathcal B}_{\mathbb R}^n, {{{G}}^n} )$ is defined by
The estimator $E: {\mathbb R}^n \to \Theta (\equiv {\mathbb R} )$ and the system quantity$\pi: \Omega \to \Theta $ are respectively defined by
Also, the semi-metric $d_{\Theta}^{(1)}$ in $\Theta$ is defined by
Consider the simultaneous normal measurement ${\mathsf M}_{L^\infty ({\mathbb R} \times {\mathbb R}_+)}$ $({\mathsf O}_G^n = ({\mathbb R}^n, {\mathcal B}_{\mathbb R}^n, {{{G}}^n}) ,$ $S_{[(\mu, \sigma)]})$. Assume that a measured value$x \in X ={\mathbb R}^n$ is obtained by the measurement. Let $0 < \alpha \ll 1$.
Consider the following semi-distance $d_{\Omega}^{(1)}$ in the state space ${\mathbb R} \times {\mathbb R}_+$:
For any $ \omega=(\mu, \sigma ) (\in\Omega= {\mathbb R} \times {\mathbb R}_+ )$, define the positive number $\delta^{1 - \alpha }_{\omega}$ $(> 0)$ such that:
where ${{ Ball}_{d_\Omega^{(1)}}}(\omega ; \eta)$ $=$ $\{ \omega_1 (\in\Omega): d_\Omega^{(1)} (\omega, \omega_1) \le \eta \}$ $= [\mu - \eta , \mu + \eta ] \times {\mathbb R}_+$
Then, for any $x$ $(\in {\mathbb R}^n)$, we get $D_x^{{1 - \alpha }, \Omega}$ ( the $({1 - \alpha })$-confidence interval of $x$ ) as follows:
Then, find the ${D}_{x}^{1- \alpha; \Theta}( \subseteq \Theta)$ (which may depend on $\sigma$) such that
Here, the more ${D}_{x}^{1- \alpha; \Theta}( \subseteq \Theta)$ is small, the more it is desirable.
$\bullet:$ the probability that $\mu \in {D}_{x}^{1- \alpha; \Theta}$ is more than $1-\alpha$.
6.3(1): Population mean (Confidence interval and Statistical hypothesis)
$\;\;$This web-site is the html version of "Linguistic Copehagen interpretation of quantum mechanics; Quantum language [Ver. 4]" (by Shiro Ishikawa; [home page] )
PDF download : KSTS/RR-18/002 (Research Report in Dept. Math, Keio Univ. 2018, 464 pages)
Problem 6.8 [Confidence interval].