6.3(1): Population mean (Confidence interval ) 
 
Consider the classical basic structure: 
\begin{align} 
[ C_0(\Omega )  \subseteq L^\infty (\Omega, \nu ) \subseteq B(L^2 (\Omega, \nu ))] 
\end{align} 
 
Fix a positive number $\alpha$ such that $0 < \alpha \ll 1$, for example, $\alpha = 0.05$. 
 
 
6.3.1 Preparation (simultaneous normal measurement) 
 
Example6.7 Consider the simultaneous normal measurement ${\mathsf M}_{L^\infty ({\mathbb R} \times {\mathbb R}_+)}$ $({\mathsf O}_G^n = ({\mathbb R}^n, {\mathcal B}_{\mathbb R}^n, {{{G}}^n}) ,$ $S_{[(\mu, \sigma)]})$ in $L^\infty({\mathbb R} \times {\mathbb R}_+)$. Here, the simultaneous normal observable ${\mathsf O}_G^n = ({\mathbb R}^n, {\mathcal B}_{\mathbb R}^n, {{{G}}^n} )$ is defined by  
 
\begin{align} 
& 
[{{{G}}}^n 
({\mathop{\mbox{$\times$}}}_{k=1}^n \Xi_k)] 
(\omega) 
= 
{\mathop{\mbox{ $\times$}}}_{k=1}^n 
[{{{G}}}(\Xi_k)](\omega) 
\nonumber 
\\ 
= 
& 
\frac{1}{({{\sqrt{2 \pi }\sigma{}}})^n} 
\underset{{{\mathop{\mbox{$\times$}}}_{k=1}^n \Xi_k }}{\int \cdots \int} 
\exp[{}- \frac{\sum_{k=1}^n ({}{x_k} - {}{\mu}  )^2  
} 
{2 \sigma^2}    {}] d {}{x_1} d {}{x_2}\cdots dx_n 
\tag{6.24} 
\\ 
& 
\qquad  
(\forall  \Xi_k \in {\cal B}_{{\mathbb R}{}}^{} 
(k=1,2,\ldots, n), 
\quad 
\forall   {}{\omega}=(\mu, \sigma )    \in \Omega = {\mathbb R}\times {\mathbb R}_+). 
\nonumber 
\end{align} 
Therefore,the state space $\Omega$ and the measured value space $X$ are defined by 
\begin{align} 
& 
\Omega = {\mathbb R} \times {\mathbb R}_+ 
\\ 
& 
X={\mathbb R}^n 
\end{align} 
Also, the second state space $\Theta$ is defined by 
\begin{align} 
& 
\Theta = {\mathbb R} 
\end{align} 
 
The estimator  $E: {\mathbb R}^n \to \Theta  (\equiv {\mathbb R} )$ and the system quantity$\pi: \Omega \to \Theta $ are respectively defined by 
 
\begin{align} 
& 
E(x)=E(x_1, x_2, \ldots , x_n ) 
= 
\overline{\mu}(x) 
= 
\frac{x_1 + x_2 + \cdots + x_n}{n} 
\\ 
& 
\Omega={\mathbb R} \times {\mathbb R}_+ 
\ni 
\omega = (\mu, \sigma ) 
\mapsto \pi (\omega ) = \mu \in \Theta={\mathbb R} 
\end{align} 
 
Also, the semi-metric $d_{\Theta}^{(1)}$ in $\Theta$ is defined by 
 
\begin{align} 
d_{\Theta}^{(1)}(\theta_1, \theta_2) 
= 
|\theta_1 - \theta_2| 
\qquad 
(\forall \theta_1, \theta_2 \in \Theta ={\mathbb R}) 
\nonumber 
\end{align} 
 
 
 
 
6.3.2 Confidence interval 
Our present problem is as follows. 
 
 
Problem 6.8 [Confidence interval].  
Consider the simultaneous normal measurement ${\mathsf M}_{L^\infty ({\mathbb R} \times {\mathbb R}_+)}$ $({\mathsf O}_G^n = ({\mathbb R}^n, {\mathcal B}_{\mathbb R}^n, {{{G}}^n}) ,$ $S_{[(\mu, \sigma)]})$. Assume that a measured value$x \in X ={\mathbb R}^n$ is obtained by the measurement. Let $0 < \alpha \ll 1$. 
 
Then, find the ${D}_{x}^{1- \alpha; \Theta}( \subseteq \Theta)$ (which may depend on $\sigma$) such that 
 
 
| $\bullet:$ | the probability that $\mu \in {D}_{x}^{1- \alpha; \Theta}$ is more than $1-\alpha$. | 
 
Here, the more ${D}_{x}^{1- \alpha; \Theta}( \subseteq \Theta)$ is small, the more it is desirable. 
  
 
Consider the following semi-distance $d_{\Omega}^{(1)}$ in the state space ${\mathbb R} \times {\mathbb R}_+$:
 
\begin{align} 
d_{\Omega}^{(1)}((\mu_1,\sigma_1), (\mu_2,\sigma_2)) 
= 
|\mu_1 - \mu_2| 
\tag{6.25} 
\end{align} 
 
 
For any $ \omega=(\mu, \sigma )  (\in\Omega= {\mathbb  R} \times {\mathbb R}_+ )$, define the positive number $\delta^{1 - \alpha }_{\omega}$ $(> 0)$ such that: 
 
\begin{align} 
\delta^{1 - \alpha }_{\omega} 
= 
\inf 
\{ 
\eta > 0: 
[F (E^{-1} ( 
{{ Ball}_{d_\Omega^{(1)}}}(\omega ; \eta))](\omega ) 
\ge {1 - \alpha } 
\} 
\nonumber 
\end{align} 
 
where ${{ Ball}_{d_\Omega^{(1)}}}(\omega ; \eta)$ $=$ $\{ \omega_1 (\in\Omega): d_\Omega^{(1)} (\omega, \omega_1) \le \eta \}$ $= [\mu - \eta , \mu + \eta ] \times {\mathbb R}_+$ 
 
Hence we see that 
\begin{align} 
& 
E^{-1}({{ Ball}_{d_\Omega^{(1)}}}(\omega ; \eta )) 
= 
E^{-1}([\mu - \eta , \mu + \eta ] \times {\mathbb R}_+) 
\nonumber 
\\ 
= 
& 
\{ 
(x_1, \ldots , x_n ) 
\in {\mathbb R}^n 
\;: 
\; 
\mu - \eta  
\le 
\frac{x_1+\ldots + x_n }{n} \le  \mu + \eta  
\} 
\tag{6.26} 
\end{align} 
Thus, 
\begin{align} 
& 
[{{{G}}}^n 
(E^{-1}({{ Ball}_{d_\Omega^{(1)}}}(\omega ; \eta ))] 
(\omega) 
\nonumber 
\\ 
= 
& 
\frac{1}{({{\sqrt{2 \pi }\sigma{}}})^n} 
\underset{{ 
\mu - \eta  
\le 
\frac{x_1+\ldots + x_n }{n} \le  \mu + \eta  
}}{\int \cdots \int} 
\exp[{}- \frac{\sum_{k=1}^n ({}{x_k} - {}{\mu}  )^2  
} 
{2 \sigma^2}    {}] d {}{x_1} d {}{x_2}\cdots dx_n 
\nonumber 
\\ 
= 
& 
\frac{1}{({{\sqrt{2 \pi }\sigma{}}})^n} 
\underset{{ 
 - \eta  
\le 
\frac{x_1+\ldots + x_n }{n} \le   \eta  
}}{\int \cdots \int} 
\exp[{}- \frac{\sum_{k=1}^n ({}{x_k}  {}{}  )^2  
} 
{2 \sigma^2}    {}] d {}{x_1} d {}{x_2}\cdots dx_n 
\nonumber 
\\ 
\end{align}  
Using the Gauss integral (6.6), we see 
\begin{align} 
= 
& 
\frac{\sqrt{n}}{{\sqrt{2 \pi }\sigma{}}} 
\int_{{- \eta}}^{\eta} \exp[{}- \frac{{n}{x}^2 }{2 \sigma^2}] d {x} 
= 
\frac{1}{{\sqrt{2 \pi }{}}} 
\int_{{- \sqrt{n} \eta/\sigma}}^{\sqrt{n} \eta / \sigma} \exp[{}- \frac{{x}^2 }{2 }] d {x} 
\tag{6.27} 
\end{align} 
Solving the following equation: 
\begin{align} 
\frac{1}{{\sqrt{2 \pi }{}}} 
\int^{-z({ \alpha }/2)}_{-\infty} \exp[{}- \frac{{x}^2 }{2 }] d {x} 
= 
\frac{1}{{\sqrt{2 \pi }{}}} 
\int_{z({ \alpha }/2)}^{\infty} \exp[{}- \frac{{x}^2 }{2 }] d {x} 
= 
\frac{\alpha}{2} 
\tag{6.28} 
\end{align} 
we define that 
\begin{align} 
\delta^{1 - \alpha }_{\omega} =  
 \frac{\sigma}{\sqrt{n}} 
 z(\frac{\alpha}{2}) 
\tag{6.29} 
\end{align} 
 
Then, for any $x$ $(\in {\mathbb R}^n)$, we get $D_x^{{1 - \alpha }, \Omega}$ ( the $({1 - \alpha })$-confidence interval of $x$ ) as follows: 
 
\begin{align} 
D_x^{{1 - \alpha, \Omega }} 
& 
= 
\{ 
{\omega} 
(\in 
\Omega) 
: 
d_\Omega (E(x), 
\omega) 
\le 
\delta^{1 - \alpha }_{\omega } 
\} 
\nonumber 
\\ 
& 
= 
\{ (\mu, \sigma ) \in {\mathbb R} \times {\mathbb R}_+ 
\;:\; 
| \mu - \overline{\mu}(x)| 
= 
| \mu - \frac{x_1+ \ldots + x_n}{n}| 
\le  
 \frac{\sigma}{\sqrt{n}} 
 z(\frac{\alpha}{2}) 
 \} 
\tag{6.30} 
\end{align} 
 
 Also, 
\begin{align} 
D_x^{{1 - \alpha, \Theta }} 
& 
= 
\{ 
\pi ({\omega}) 
(\in \Theta) 
: 
d_\Omega (E(x), 
\omega) 
\le 
\delta^{1 - \alpha }_{\omega } 
\} 
\nonumber 
\\ 
& 
= 
\{ \mu \in {\mathbb R}  
\;:\; 
| \mu - \overline{\mu}(x)| 
= 
| \mu - \frac{x_1+ \ldots + x_n}{n}| 
\le  
 \frac{\sigma}{\sqrt{n}} 
 z(\frac{\alpha}{2}) 
 \} 
\nonumber 
\end{align} 
which depends on $\sigma$.
 
 
Also, 
\begin{align} 
D_x^{{1 - \alpha, \Theta }} 
& 
= 
\{ 
\pi ({\omega}) 
(\in \Theta) 
: 
d_\Omega (E(x), 
\omega) 
\le 
\delta^{1 - \alpha }_{\omega } 
\} 
\nonumber 
\\ 
& 
= 
\{ \mu \in {\mathbb R}  
\;:\; 
| \mu - \overline{\mu}(x)| 
= 
| \mu - \frac{x_1+ \ldots + x_n}{n}| 
\le  
 \frac{\sigma}{\sqrt{n}} 
 z(\frac{\alpha}{2}) 
 \} 
\nonumber 
\end{align} 
which depends on $\sigma$. 
 
 
 
 
 
