16.5: Calculation: Smoothing part
16.5.1: Calculation:
$
\Big(
F_{s} (\Xi_{s})
\Phi^{s,s+1}{\widehat F}_{s+1}(\times_{t=s+1}^n \Xi_{t})
\Big)
$
in (16.9) (in $\S$16.3)
where it is assumed that
$c_n$, $d_n$ and $q_n$ are known
$(t \in T)$. And thus, put
And further, Lemma 16.3 implies that the causal operator
$\Phi^{t-1,t}:L^\infty (\Omega_t) \to L^\infty ( \Omega_{t-1})$
is defined by
Put
\begin{align}
\widetilde{f}_{x_n}(\omega_n)
&
=
\frac{1}{\sqrt{2 \pi} {q}_n}
\exp[
-\frac{(x_n -c_n \omega_n - d_n)^2}{2{q}_n^2}
]
\nonumber \\
&
\approx
\exp[
-\frac{(c_n \omega_n -( x_n-d_n))^2}{2{q}_n^2}
]
\equiv
\exp[
-
\frac
{1}{2}
\Big(\widetilde{u}_n \omega_n -\widetilde{v}_n \Big)^2
]
\tag{16.19}
\end{align}
And also, Lemma 16.3 implies that
\begin{align}
\widetilde{f}_{x_{t-1}}(\omega_{t-1})
&
=
\exp[
-\frac{(c_{t-1} \omega_{t-1} + d_{t-1}-x_{t-1})^2}{2{q}_{t-1}^2}
]
\exp[
-\frac{({{u}}_{t-1} \omega_{t-1}-{{v}_{t-1}})^2}{2}
]
\nonumber \\
&
\approx
\exp
[
-\frac{1}{2}
(
\frac{c_{t-1}^2 + u_{t-1}^2 q_{t-1}^2}{q_{t-1}^2 }
)
\Big(\omega_{t-1} -
\frac{
{c_{t-1}(d_{t-1}-t_{t-1})}
+
{u_{t-1}v_{t-1}}{q_{t-1}^2}
}{{c_{t-1}^2} + {u_{t-1}^2}{q_{t-1}^2}}
\Big)^2
]
\nonumber \\
&
\approx
\exp[
-\frac{1}{2}
\Big({\widetilde{u}}_{t-1} \omega_{t-1}-{\widetilde{v}_{t-1}}
\Big)^2
]
\tag{16.23}
\end{align}
where
\begin{align}
{{\widetilde{u}}_{t-1}}
=
\frac{\sqrt{c_{t-1}^2 + u_{t-1}^2 q_{t-1}^2}}{q_{t-1} },
\;\;
{{\widetilde{v}}_{t-1}}
=
\frac{
{c_{t-1}(d_{t-1}-t_{t-1})}
+
{u_{t-1}v_{t-1}}{q_{t-1}^2}
}{q_{t-1} \sqrt{{c_{t-1}^2} + {u_{t-1}^2}{q_{t-1}^2}}}
\tag{16.24}
\end{align}
Summing up the above (16.19)-(16.24), we see:
\begin{align}
{
\overset{\widetilde{u}_s, \widetilde{v}_s}{
\underset{\widetilde{w}_s}{\fbox{$\widetilde{f}_{x_s}$}}
}}
\xleftarrow[]{\mbox{$x_s$}}
\cdots
\xleftarrow[]{\Phi^{t-2,t-1}}
{
\overset{\widetilde{u}_{t-1}, \widetilde{v}_{t-1}}{
\underset{\widetilde{w}_{t-1}}{
{{\fbox{$\widetilde{f}_{x_{t-1}}$}}}}}}
\xleftarrow[(16.24)]{{x_{t-1}}}
{
\overset{{u}_{t-1}, {v}_{t-1}}{
\underset{w_{t-1}}{
\fbox{${f}_{t-1}$}}}
}
\xleftarrow[(16.22)]{\Phi^{t-1,t}}
{
\overset{\widetilde{u}_t, \widetilde{v}_t}{
\underset{{\widetilde{w}_t}}{
\fbox{$\widetilde{f}_{x_t}$}}}
}
\xleftarrow[]{{x_{t}}}
\cdots
\xleftarrow[]{{x_{n-1}}}
{
\overset{{u}_{n-1}, {v}_{n-1}}{
\underset{{w}_{n-1}}{
\fbox{${f}_{n-1}$}}}
}
\xleftarrow[]{\Phi^{n-1,n}}
{
\overset{{\widetilde{u}_n \widetilde{v}_n}}{\underset{{\widetilde{w}_n}}{\fbox{$\widetilde{f}_{x_n}$=(16.19)}}}
}
\end{align}
And thus,
we get
\begin{align}
\widetilde{f}_{x_s}
\approx
\lim_{\Xi_t \to x_t \;( t \in \{s.s+1, \cdots, n\})}
\frac{
\Big(
F_{s} (\Xi_{s})
\Phi^{s,s+1}{\widehat F}_{s+1}(\times_{t=s+1}^n \Xi_{t})
\Big)}
{
\|
F_{s} (\Xi_{s})
\Phi^{s,s+1}{\widehat F}_{s+1}(\times_{t=s+1}^n \Xi_{t})
\Big)
\|_{L^\infty (\Omega_s )}
}
\tag{16.25}
\end{align}
in (16.9) (in $\S$16.3)
After all,
we solve Problem 16.2 (Kalman Filter),
that is,
$(A):$
Assume that
a measured value
$(x_0, x_2, \cdots, x_n )$
$(\in \times_{t=0}^n X_t)$
is obtained by the measurement
${\mathsf M}_{L^\infty (\Omega_0)}$
$(\widehat{\mathsf O}_{t_0},$
$
\overline{S}_{[\ast]}({{z}}_0 )
)$.
Let $s(\in T)$ be fixed. Then,
we get
the Bayes-Kalman operator
$[B_{\widehat{\mathsf{O}}_{t_0} }^s(\times_{t \in T} \{x_t\})]
({{z}}_0)$, that is,
\begin{align}
\Big([B_{\widehat{\mathsf{O}}_{t_0} }^s(\times_{t \in T} \{x_t\})]
{{z}}_0
\Big)(\omega_s)
=
\frac{\widetilde{f}_{x_s}(\omega_s ) \cdot {{z}}_s (\omega_s )}{
\int_{-\infty}^{\infty}
\widetilde{f}_{x_s}(\omega_s ) \cdot {{z}}_s (\omega_s )
d \omega_s
}
=
z_s^a(\omega_s)
\quad
(
\forall \omega_s \in \Omega_s
)
\end{align}
where
${{z}}_s$
in (16.18)
and
$\widetilde{f}_{x_s}$
in
(16.25)
can be iteratively calculated as mentioned in this section.
Remark 16.5
The following classification is usual
$(B_1):$
Smoothing: in the case that $0 \le s < n$
$(B_2):$
Filter:
in the case that $s= n$
$(B_3):$
Prediction:
in the case that $s= n$ and,
for any $m$
such that $n_0 \le m < n$,
the existence observable $(X_m, {\mathcal F}_m, F_m )=
(\{1\}, \{\emptyset ,\{1 \} \}, F_m )$
is defined by
$F_m(\emptyset )\equiv 0$,
$F_m(\{ 1 \} )\equiv 1$,
16.5: Calculation: Smoothing part of Kalman filter
This web-site is the html version of "Linguistic Copehagen interpretation of quantum mechanics; Quantum language [Ver. 4]" (by Shiro Ishikawa; [home page] )
PDF download : KSTS/RR-18/002 (Research Report in Dept. Math, Keio Univ. 2018, 464 pages)
Answer 16.4 [The answer to Problem16.2 (Kalman Filter)]