As mentioned in Problem 15.3 ( regression analysis),
consider
the measurement
${\mathsf M}_{L^\infty (\Omega_{0} \times {\mathbb R}_+)}(
{\mathsf O} \equiv (X(={\mathbb R}^n), {\cal F}, F)
,$
$ S_{[(\beta_0,\beta_1, \sigma)]}
{}
)$
For each $(\beta, \sigma) \in {\mathbb R}^2 \times {\mathbb R}_+$,
define the sample probability space
$(X, {\mathcal F}, P_{(\beta, \sigma)} )$,
where
Define $L^2(X, P_{(\beta, \sigma)})$
(or in short,$L^2(X)$)
by
Furthermore,
for each
$f, g \in L^2(X)$,
define
$E(f)$
and
$V(f)$
such that
Our main assertion is to mention Problem 15.3
(i.e.,
regression analysis in quantum language).
This section
should be regarded as
an easy consequence of Problem 15.3 ( regression analysis).
For the detailed proof of Lemma 15.5, see standard books of statistics.
Lemma 15.5
Consider the measurement
${\mathsf M}_{L^\infty(\Omega_{0} \times {\mathbb R}_+)}(
{\mathsf O} \equiv (X, {\cal F}, F)
, S_{[(\beta_0,\beta_1, \sigma)]}
{}
)$
in Problem 15.3 ( regression analysis).
And assume the above notations. Then, we see:
Let
${\mathsf M}_{L^\infty(\Omega_{0}(={\mathbb R}^2) \times {\mathbb R}_+)}(
{\mathsf O} \equiv (X(={\mathbb R}^n), {\cal F}, F)
, S_{[(\beta_0,\beta_1, \sigma)]}
{}
)$
be the measurement
in Problem 15.3 ( regression analysis).
For each $k=0,1$,
define the estimator
${\widehat{E}}_k:X(={\mathbb R}^n) \to {\Theta_k}(={\mathbb R})$
and
the quantity
$\pi_k: \Omega(={\mathbb R}^2 \times {\mathbb R}_+) \to {\Theta_k}(={\mathbb R})$
as follows.
Let
$\alpha$
be a real number such that
$0 < \alpha \ll 1$,
for example,
$\alpha = 0.05$.
For any state
$ \omega =( \beta, \sigma )
(\in \Omega ={\mathbb R}^2 \times {\mathbb R}_+)$,
define
the positive number
$\eta^\alpha_{\omega, k}$
$(> 0)$
by
(6.9), (6.15),
that is,
where, for each $\theta_k^0, \theta_k^1 (\in \Theta_k )$, the semi-distance $d_{\Theta_k}^x$ in $\Theta_k$ is defined by
Therefore,
we see,
by Lemma 15.5, that
Summing up the above arguments,
we have the following proposition:
Proposition 15.6 [confidence interval]
Assume that
a measured value
$x \in X$ is obtained by the measurement
${\mathsf M}_{L^\infty(\Omega_{0} \times {\mathbb R}_+)}(
{\mathsf O} \equiv (X, {\cal F}, F)
, S_{[(\beta_0,\beta_1, \sigma)]}
{}
)$.
Here, the state $(\beta_0,\beta_1, \sigma)$ is assumed to be unknown.
Then, we have
the
$(1- \alpha)$-confidence interval $I_{x,k}^{1- \alpha}$
in Corollary 6.6 as follows.
Proposition 15.7 [Statistical hypothesis testing]
Consider the measurement
${\mathsf M}_{L^\infty(\Omega_{0} \times {\mathbb R}_+)}(
{\mathsf O} \equiv (X, {\cal F}, F)
, S_{[(\beta_0,\beta_1, \sigma)]}
{}
)$.
Here, the state $(\beta_0,\beta_1, \sigma)$ is assumed to be unknown.
Then, according to Corollary 6.6, we say:
Assume the null hypothesis
$H_N = { \{ \beta_1 \}}
(\subseteq \Theta_1={\mathbb R})$.
Then, the rejection region
is as follows:
15.3: Regression analysis(distribution , confidence interval and statistical hypothesis testing)
$(A_1):$
$
\mbox{(1): }
V(\hat{\beta}_0)= \frac{\sigma^2}{n}(1+ \frac{\overline{a}^2}{s_{aa}}),
\qquad
\mbox{(2): }
V(\hat{\beta}_1)= \frac{\sigma^2}{n} \frac{1}{s_{aa}},
$
$(A_2):$
[Studentization]. Motivated by the (A$_1$), we see:
\begin{align}
&
T_{\beta_0}
:=
\frac{\sqrt{n}(\hat{\beta}_0-{\beta}_0)}
{\sqrt{
{\hat{\sigma}^2(1+ \overline{a}^2/ s_{aa})}}}
\sim
t_{n-2},
\qquad
T_{\beta_1}
:=
\frac{\sqrt{n}(\hat{\beta}_1-{\beta}_1)}
{\sqrt{
{\hat{\sigma}^2/ s_{aa}}}}
\sim
t_{n-2}
\tag{15.27}
\end{align}
where $t_{n-2}$ is the student's distribution with $n-2$ degrees of freedom.
$(B_1):$
Assume the null hypothesis
$H_{N} = { \{ \beta_0 \}}
(\subseteq \Theta_0={\mathbb R})$.
Then, the rejection region
is as follows:
\begin{align}
{\widehat R}_{{H_N}}^{\alpha; X}
&
=
{\widehat{E}_0}^{-1}(
{\widehat R}_{{H_N}}^{\alpha; {\Theta_0}})
=
\bigcap_{\omega \in \Omega \mbox{ such that }
\pi_0(\omega) \in {H_N}}
\{
x
(\in
X)
:
d^x_{\Theta_0} ({\widehat{E}_0}(x),
\pi_0(\omega )
)
\ge
\eta^\alpha_{\omega }
\}
\nonumber
\\
&
=
\Big\{
x \in X
\;:\;
\frac{
|\hat{\beta}_0 (x) -{\beta}_0|
}{
{\sqrt{
{\frac{\hat{\sigma}^2(x)}{n}(1+ \overline{a}^2/ s_{aa})}}}
}
\ge
t_{n-2}(\alpha/2)
\Big\}
\tag{15.34}
\end{align}
$(B_2):$
15.3: Regression analysis(distribution , confidence interval and statistical hypothesis testing)
This web-site is the html version of "Linguistic Copehagen interpretation of quantum mechanics; Quantum language [Ver. 4]" (by Shiro Ishikawa; [home page] )
PDF download : KSTS/RR-18/002 (Research Report in Dept. Math, Keio Univ. 2018, 464 pages)
$\square \quad$