16.3: Bayes=Kalman operator
$B_{\widehat{\mathsf{O}}_{0} }^s (\times_{t \in T} \{x_t \})$
In what follows, we solve Problem 16.2.
For this,
it suffices to find the
${{z}}_s \in L^1_{+1} (\Omega_s )$ such that
Let us calculate
${{z}}_s= [B_{\widehat{\mathsf{O}}_{0} }^s (\times_{t \in T} \{x_t \})]({{{z}}}_0)$
as follows.
\begin{align}
(16.7)
=
&
{}_{{}_{L^1(\Omega_1)}} \langle \Phi^{0,1}_* (\widetilde{{{z}}}_0),
{\widehat F}_{1}((\times_{t=1}^n \Xi_{t}) \times \Gamma_s)
\rangle {}_{{}_{L^\infty(\Omega_1)}}
\nonumber \\
=
&
{}_{{}_{L^1(\Omega_2)}} \langle \Phi^{1,2}_* ( \widetilde{{{z}}}_1),
{\widehat F}_{2}((\times_{t=2}^n \Xi_{t}) \times \Gamma_s)
\rangle {}_{{}_{L^\infty(\Omega_2)}}
\nonumber \\
&
\cdots \cdots
\nonumber \\
=
&
{}_{{}_{L^1(\Omega_{s+1})}} \langle
\Phi^{s,s+1}_* ( \widetilde{{{z}}}_{s}),
{\widehat F}_{s+1}((\times_{t=s+1}^n \Xi_{t}) \times \Gamma_s)
\rangle {}_{{}_{L^\infty(\Omega_{s+1})}}
\nonumber \\
=
&
{}_{{}_{L^1(\Omega_{s})}} \langle
\Phi^{s-1,s}_* ( \widetilde{{{z}}}_{s-1}),
{\widehat F}_{s}((\times_{t=s}^n \Xi_{t}) \times \Gamma_s)
\rangle {}_{{}_{L^\infty(\Omega_{s})}}
\nonumber \\
=
&
{}_{{}_{L^1(\Omega_{s})}} \langle
\Phi^{s-1,s}_* (\widetilde{{{z}}}_{s-1}),
F_{s} (\Xi_{s})G_{s} (\Gamma_{s})
\Phi^{s,s+1}{\widehat F}_{s+1}(\times_{t=s+1}^n \Xi_{t})
\rangle {}_{{}_{L^\infty(\Omega_{s})}}
\nonumber \\
=
&
{}_{{}_{L^1(\Omega_{s})}} \langle
\Big(
F_{s} (\Xi_{s})
\Phi^{s,s+1}{\widehat F}_{s+1}(\times_{t=s+1}^n \Xi_{t})
\Big)
\Big(
\Phi^{s-1,s}_*
(\widetilde{{{z}}}_{s-1})
\Big),
G_{s} (\Gamma_{s})
\rangle {}_{{}_{L^\infty(\Omega_{s})}}
\tag{16.8}
\end{align}
Thus, we see
\begin{align}
[B_{\widehat{\mathsf{O}}_{0} }^s (\times_{t \in T} \{x_t \})]({{z}}_0)
=
\lim_{ \Xi_t \to x_t \;\;(t\in T)}
\frac{
\Big(
F_{s} (\Xi_{s})
\Phi^{s,s+1}{\widehat F}_{s+1}(\times_{t=s+1}^n \Xi_{t})
\Big)
\times
\Big(
\Phi^{s-1,s}_* \widetilde{{{z}}}_{s-1})
\Big)
}
{\int_{\Omega_0} [{\widehat F}_{0}(\times_{t=0}^n \Xi_{t}) ](\omega_0)\;\;
{{z}}_0 (\omega_0 ) d\omega_0}
\tag{16.9}
\end{align}
$(A):$
and,
putting
$\widetilde{{{z}}}_0=F_0(\Xi_0) {{z}}_0$
(or, exactly, its normalization,
i.e.,
$\widetilde{{{z}}}_0=\lim_{\Xi_0 \to x_0}
\frac{F_0(\Xi_0) {{z}}_0}{\int_{\Omega_0}{F_0(\Xi_0) {{z}}_0} d\omega_0}$)
,
$\widetilde{{{z}}}_1=F_1(\Xi_1) \Phi^{0,1}_* (\widetilde{{{z}}}_0)$,
$\widetilde{{{z}}}_2=F_2(\Xi_2) \Phi^{1,2}_* ( \widetilde{{{z}}}_1)$,
$\cdots$ ,
$\widetilde{{{z}}}_{s-1}=F_{s-1}(\Xi_{s-1}) \Phi^{s-2,s-1}_* (\widetilde{{{z}}}_{s-2})$,
we see that
16.3: Bayes=Kalman operator $B_{\widehat{\mathsf{O}}_{0} }^s (\times_{t \in T} \{x_t \})$
This web-site is the html version of "Linguistic Copehagen interpretation of quantum mechanics; Quantum language [Ver. 4]" (by Shiro Ishikawa; [home page] )
PDF download : KSTS/RR-18/002 (Research Report in Dept. Math, Keio Univ. 2018, 464 pages)