16.2: Problem establishment (concrete calculation)
In the previous section,
we study the general theory of Kalman filter.
In this section, we devote ourselves to the calculation of
Kalman filter
in the case of
a linear ordered tree
$T=\{0,1,2, \cdots, n\}$
such that
the parent map
$\pi : T\setminus \{0\} \to T$
is defined by
$\pi(k) = k-1$:
\begin{align}
0 \xleftarrow[]{\quad \pi \quad}
1 \xleftarrow[]{\quad \pi \quad}
2 \xleftarrow[]{\quad \pi \quad}
\cdots
\xleftarrow[]{\quad \pi \quad}
n-1 \xleftarrow[]{\quad \pi \quad}
n
\end{align}
For each $k \in T$, consider the classical basic structure: \begin{align} [ C_0(\Omega_k ) \subseteq L^\infty ( \Omega_k, m_k) \subseteq B(L^\infty ( \Omega_k, m_k)) ] \Big( = [ C_0 ({\mathbb R}) \subseteq L^\infty ( {\mathbb R}, d \omega ) \subseteq B(L^2 ( {\mathbb R}, d \omega ))] \Big) \end{align}
where $d \omega$ is the Lebesgue measure on ${\mathbb R}$.
Thus, we have the following situation: \begin{align} \overset{\mbox{initial state ${{z}}_0$}}{\underset{{\mathsf O}_0=(X_0, {\mathcal F}_0 F_0)}{\fbox{$L^\infty(\Omega_0, m_0 )$}}} \xleftarrow[]{\Phi^{0,1}} \underset{{\mathsf O}_1=(X_1, {\mathcal F}_1 F_1)}{\fbox{$L^\infty(\Omega_1, m_1 )$}} \xleftarrow[]{\Phi^{1,2}} \cdots \xleftarrow[]{\Phi^{s-1,s}} \underset{{\mathsf O}_s=(X_s, {\mathcal F}_s F_s)}{\fbox{$L^\infty(\Omega_s, m_s )$}} \xleftarrow[]{\Phi^{s,s+1}} \cdots \xleftarrow[]{\Phi^{n-1,n}} \underset{{\mathsf O}_n=(X_n, {\mathcal F}_n F_n)}{\fbox{$L^\infty(\Omega_n, m_n )$}} \end{align} or, equivalently, \begin{align} \overset{\mbox{initial state ${{z}}_0$}}{\underset{{\mathsf O}_0=(X_0, {\mathcal F}_0, F_0)}{\fbox{$L^1(\Omega_0, m_0 )$}}} \xrightarrow[]{\Phi_*^{0,1}} \underset{{\mathsf O}_1=(X_1, {\mathcal F}_1, F_1)}{\fbox{$L^1(\Omega_1, m_1 )$}} \xrightarrow[]{\Phi_*^{1,2}} \cdots \xrightarrow[]{\Phi_*^{s-1,s}} \underset{{\mathsf O}_s=(X_s, {\mathcal F}_s, F_s)}{\fbox{$L^1(\Omega_s, m_s )$}} \xrightarrow[]{\Phi_*^{s,s+1}} \cdots \xrightarrow[]{\Phi_*^{n-1,n}} \underset{{\mathsf O}_n=(X_n, {\mathcal F}_n, F_n)}{\fbox{$L^1(\Omega_n, m_n )$}} \end{align}
where it is assumed that $\mu_0$ and $\sigma_0$ are known.
Also, for each $t \in T =\{0,1, \cdots, n \}$, consider the observable ${\mathsf O}_t=(X_t, {\mathcal F}_t, F_t)$ $=({\mathbb R}, {\mathcal B}_{{\mathbb R}}, F_t )$ in $L^\infty ( \Omega_t, m_t )$ such that
\begin{align} & [F_t (\Xi_t )](\omega_t) = \int_{\Xi_t} \frac{1}{\sqrt{2 \pi} {q}_t} \exp[ -\frac{(x_t -c_t \omega_t -d_t)^2}{2{q}_t^2} ] dx_t \equiv \int_{\Xi_t} f_{x_t}(\omega_t) dx_t \quad(\forall \Xi_t \in {\mathcal F}_t, \;\; \forall \omega_t \in \Omega_t ) \\ & {\quad} \tag{16.4} \end{align}where it is assumed that $c_t$, $d_t$ and $q_t$ are known $(t \in T)$.
And further, the causal operator $\Phi^{t-1,t}:L^\infty (\Omega_t) \to L^\infty ( \Omega_{t-1})$ is defined by
\begin{align} & [\Phi^{t-1,t} \widetilde{f}_{x_{t}}](\omega_{t-1} ) = \int_{- \infty}^{\infty} \frac{1}{\sqrt{2 \pi} r_t} \exp[ -\frac{(\omega_t - a_t \omega_{t-1} -b_t )^2}{2r_t^2} ] \widetilde{f}_{x_{t}} ) d \omega_{t} \equiv f_{t-1}(\omega_{t-1}) \tag{16.5} \\ & \qquad \qquad \qquad (\forall \widetilde{f}_{x_{t}} \in L^\infty(\Omega_{t}, m_{t}), \;\; \forall \omega_{t-1} \in \Omega_{t-1}) \nonumber \end{align}where it is assumed that $a_t$, $b_t$ and $r_t$ are known $(t \in T)$.
Or, equivalently, the pre-dual causal operator $\Phi_*^{t-1,t}:L^1_{+1} (\Omega_{t-1}) \to L^1_{+1} ( \Omega_{t})$ is defined by
\begin{align} & [\Phi^{t-1,t}_* \widetilde{{{z}}}_{t-1}](\omega_t ) = \int_{- \infty}^{\infty} \frac{1}{\sqrt{2 \pi} r_t} \exp[ -\frac{(\omega_t - a_t \omega_{t-1} -b_t )^2}{2r_t^2} ] \widetilde{{{z}}}_{t-1}(\omega_{t-1}) d\omega_{t-1} \tag{16.6} \\ & \qquad \qquad \qquad (\forall \widetilde{{{z}}}_{t-1} \in L^1_{+1}(\Omega_{t-1}, m_{t-1}), \; \forall \omega_t \in \Omega_t) \nonumber \end{align}Now we have the sequential causal observable
\begin{align} [{\mathbb O}_T] = [ \{{\mathsf O}_t \}_{t \in T}, \{ \Phi^{t-1, t} : L^\infty (\Omega_{t}) \to L^\infty (\Omega_{t-1}) \}_{T=1,2, \cdots, n} \end{align}Let $\widehat{\mathsf O}_{0}$ $(\times_{t=0}^n X_t, \boxtimes_{t=0}^n {\mathcal F}_t, {\widehat F} )$ be its realization. Then we have the following problem:
$\quad$ | Assume that a measured value $(x_0, x_2, \cdots, x_n )$ $(\in \times_{t=0}^n X_t)$ is obtained by the measurement ${\mathsf M}_{L^\infty (\Omega_0)}$ $(\widehat{\mathsf O}_{0},$ $ \overline{S}_{[\ast]}({{z}}_0 ) )$. Let $s(\in T)$ be fixed. Then, calculate the Bayes-Kalman operator $[B_{\widehat{\mathsf{O}}_{0} }^s(\times_{t \in T} \{x_t\})] ( {{z}}_0 )$ in (6.2), where \begin{align} [B_{\widehat{\mathsf{O}}_{0} }^s(\times_{t \in T} \{x_t\})] ( {{z}}_0 ) = {{z}}_s^a = \lim_{\Xi_t \to x_t \;(t\in T)} [B_{\widehat{\mathsf{O}}_{0} }^s(\times_{t \in T} \Xi_t)]({{z}}_0) \end{align} That is, \begin{align} L^1_{+1}(\Omega_0) \ni {{z}}_0 \xrightarrow[B_{\widehat{\mathsf{O}}_{0} }^s(\times_{t \in T} \{x_t\})]{\mbox{ measured value:}(x_0,x_1,...,x_n)} {{z}}_s^a \in L^1_{+1}(\Omega_s) \end{align} |