Consider the parallel measurement${\mathsf M}_{L^\infty (({\mathbb R} \times {\mathbb R}_+) \times ({\mathbb R} \times {\mathbb R}_+))}$ $({\mathsf O}_G^n \otimes {\mathsf O}_G^m= ({\mathbb R}^n \times {\mathbb R}^m \ , {\mathcal B}_{\mathbb R}^n \boxtimes {\mathcal B}_{\mathbb R}^m, {{{G}}^n} \otimes {{{G}}^m}) ,$ $S_{[(\mu_1, \sigma_1, \mu_2 , \sigma_2)]})$ (in $L^\infty(({\mathbb R} \times {\mathbb R}_+) \times ({\mathbb R} \times {\mathbb R}_+))$ ) of two normal measurements.
Assume that $\sigma_1$ and $\sigma_2$ are fixed and known. Thus, this parallel measurement is represented by ${\mathsf M}_{L^\infty ({\mathbb R} \times{\mathbb R} )}$ $({\mathsf O}_{G_{\sigma_1}}^n \otimes {\mathsf O}_{G_{\sigma_1}}^m= ({\mathbb R}^n \times {\mathbb R}^m \ , {\mathcal B}_{\mathbb R}^n \boxtimes {\mathcal B}_{\mathbb R}^m, {{{G_{\sigma_1}}}^n} \otimes {{{G_{\sigma_2}}}^m}) ,$ $S_{[(\mu_1, \mu_2 )]})$ in $L^\infty ({\mathbb R} \times {\mathbb R} )$. Here, recall the normal observable (6.1), i.e.,
Therefore, we have the state space $\Omega ={\mathbb R}^2 = \{ \omega=(\mu_1, \mu_2) \;:\; \mu_1,\mu_2
\in {\mathbb R} \}$. Put $\Theta={\mathbb R}$ with the distance $d_\Theta^{(1)} ( \theta_1, \theta_2 )= |\theta_1-\theta_2|$ and consider the quantity $\pi:{\mathbb R}^2 \to
{\mathbb R}$ by
The estimator $E: \widehat{X}(=X \times Y = {{\mathbb R}^n \times {\mathbb R}^m})
\to \Theta(={\mathbb R})$ is defined by
For any $ \omega=(\mu_1, \mu_2 ) (\in \Omega= {\mathbb R} \times {\mathbb R} )$, define the positive number $\eta^\alpha_{\omega} (= \delta_\omega^{1-\alpha} )$ $(> 0)$ such that:
where ${{ Ball}^C_{d_\Theta^{(1)} }}(\pi(\omega) ; \eta)$ $=
(-\infty, \mu_1 - \mu_2 - \eta]
\cup
[ \mu_1 - \mu_2 + \eta , \infty)$.
Define the null hypothesis $H_N$ $(\subseteq \Theta = {\mathbb R})$ such that
Now let us calculate the $\eta^\alpha_{\omega}$ as follows:
Using the $z(\alpha/2)$ in (6.33), we get that
Our present problem is as follows
Let $\sigma_1$ and $\sigma_2$ be positive numbers which are assumed to be fixed. Consider the parallel measurement ${\mathsf M}_{L^\infty ({\mathbb R} \times{\mathbb R} )}$ $({\mathsf O}_{G_{\sigma_1}}^n \otimes {\mathsf O}_{G_{\sigma_1}}^m= ({\mathbb R}^n \times {\mathbb R}^m \ , {\mathcal B}_{\mathbb R}^n \boxtimes {\mathcal B}_{\mathbb R}^m, {{{G_{\sigma_1}}}^n}
\otimes {{{G_{\sigma_2}}}^m}) ,$ $S_{[(\mu_1, \mu_2 )]})$. Assume that a measured value $\widehat{x}$ $=$ $(x,y)$ $=(x_1,\ldots, x_n,y_1,\ldots, y_m)$ $(\in {\mathbb R}^n\times {\mathbb R}^m)$ is obtained by the measurement. Let $0 < \alpha \ll 1$.
Then, find the confidence interval ${D}_{(x,y)}^{1- \alpha; \Theta}( \subseteq \Theta)$ (which may depend on $\sigma_1$ and $\sigma_2$) such that
Here, the more the confidence interval ${D}_{(x,y)}^{1- \alpha; \Theta}$ is small, the more it is desirable.
Therefore, for any $\widehat{x}$ $=$ $(x,y)$ $=(x_1,\ldots, x_n,y_1,\ldots, y_m)$ $(\in {\mathbb R}^n\times {\mathbb R}^m)$, we get $D_{\widehat{x}}^{{1 - \alpha }}$ ( the $({1 - \alpha })$-confidence interval of ${\widehat x}$ ) as follows:
Our present problem is as follows
Consider the parallel measurement ${\mathsf M}_{L^\infty ({\mathbb R} \times{\mathbb R} )}$
$({\mathsf O}_{G_{\sigma_1}}^n \otimes {\mathsf O}_{G_{\sigma_1}}^m= ({\mathbb R}^n \times {\mathbb R}^m \ , {\mathcal B}_{\mathbb R}^n \boxtimes {\mathcal B}_{\mathbb R}^m, {{{G_{\sigma_1}}}^n}
\otimes {{{G_{\sigma_2}}}^m}) ,$
$S_{[(\mu_1, \mu_2 )]})$.
Assume that
that is, assume the null hypothesis$H_N$ such that
Let $0 < \alpha \ll 1$.
Then, find the rejection region ${\widehat R}_{{H_N}}^{\alpha; \Theta}( \subseteq \Theta)$ (which may depend on $\mu$) such that
Here, the more the rejection region ${\widehat R}_{{H_N}}^{\alpha; \Theta}$ is large, the more it is desirable.
By the formula (6.70), we see that the rejection region${\widehat R}_{\widehat{x}}^{\alpha}$ ( $(\alpha)$-rejection region
of $H_N =\{\theta_0\}( \subseteq \Theta)$ ) is defined by
Here,
Our present problem is as follows
Consider the parallel measurement ${\mathsf M}_{L^\infty ({\mathbb R} \times{\mathbb R} )}$ $({\mathsf O}_{G_{\sigma_1}}^n \otimes {\mathsf O}_{G_{\sigma_1}}^m= ({\mathbb R}^n \times {\mathbb R}^m \ , {\mathcal B}_{\mathbb R}^n \boxtimes {\mathcal B}_{\mathbb R}^m, {{{G_{\sigma_1}}}^n}
\otimes {{{G_{\sigma_2}}}^m}) ,$ $S_{[(\mu_1, \mu_2 )]})$.
Assume that
that is, assume the null hypothesis$H_N$ such that
Then, find the rejection region ${\widehat R}_{{H_N}}^{\alpha; \Theta}( \subseteq \Theta)$ (which may depend on $\mu$) such that
is less than $\alpha$.
Since the null hypothesis $H_N$ is assumed as follows:
it suffices to define the semi-distance $d_\Theta^{(1)} $ in $
\Theta(=
{\mathbb R})
$ such that
Then, we can easily see that
$\bullet$ the probability that $\mu_1 - \mu_2 \in {D}_{(x,y)}^{1- \alpha; \Theta}$ is more than $1-\alpha$.
$\bullet$ the probability that a measured value$(x,y) (\in{\mathbb R}^n\times {\mathbb R}^m )$ obtained by ${\mathsf M}_{L^\infty ({\mathbb R} \times{\mathbb R} )}$ $({\mathsf O}_{G_{\sigma_1}}^n \otimes {\mathsf O}_{G_{\sigma_1}}^m= ({\mathbb R}^n \times {\mathbb R}^m \ , {\mathcal B}_{\mathbb R}^n \boxtimes {\mathcal B}_{\mathbb R}^m, {{{G_{\sigma_1}}}^n}
\otimes {{{G_{\sigma_2}}}^m}) ,$ $S_{[(\mu_1, \mu_2 )]})$ sa tisfies
\begin{align}
E(x,y)=\frac{x_1+x_2+ \cdots + x_n }{n}-\frac{y_1+y_2+ \cdots + y_m }{m} \in {\widehat R}_{{H_N}}^{\alpha; \Theta}
\end{align}
is less than $\alpha$.
Here, the more the rejection region ${\widehat R}_{{H_N}}^{\alpha; \Theta}$ is large, the more it is desirable.
$\bullet$ the probability that a measured value$(x,y) (\in{\mathbb R}^n\times {\mathbb R}^m )$ obtained by ${\mathsf M}_{L^\infty ({\mathbb R} \times{\mathbb R} )}$ $({\mathsf O}_{G_{\sigma_1}}^n \otimes {\mathsf O}_{G_{\sigma_1}}^m= ({\mathbb R}^n \times {\mathbb R}^m \ , {\mathcal B}_{\mathbb R}^n \boxtimes {\mathcal B}_{\mathbb R}^m, {{{G_{\sigma_1}}}^n}
\otimes {{{G_{\sigma_2}}}^m}) ,$ $S_{[(\mu_1, \mu_2 )]})$ satisfies
\begin{align}
E(x,y)=\frac{x_1+x_2+ \cdots + x_n }{n}-\frac{y_1+y_2+ \cdots + y_m }{m} \in {\widehat R}_{{H_N}}^{\alpha; \Theta}
\end{align}
6.5: Difference of population means (Confidence interval and statistical hypothesis
This web-site is the html version of "Linguistic Copehagen interpretation of quantum mechanics; Quantum language [Ver. 4]" (by Shiro Ishikawa; [home page] )
PDF download : KSTS/RR-18/002 (Research Report in Dept. Math, Keio Univ. 2018, 464 pages)
Contents:
6.5.1: Preparation (simultaneous normal measurement)
Problem 6.15 [ Confidence interval for the difference of population means].
Problem 6.16 [Statistical hypothesis testing for the difference of population means].
Problem 6.17 [Statistical hypothesis testing for the difference of population means].