$\S$7.4.1 Normal distribution,chi-squared distribution, Student $t$-distribution,$F$-distribution 
 
 
Definition 7.6 [$F$distribution ]. 
Let $t \ge 0$, and $n_1$ and $n_2$ be natural numbers. The probability density function $p_{(n_1,n_2)}^F(t)$ of $F$-distribution with the degree of freedom$(n_1,n_2)$ is defined by 
 
\begin{align} 
p_{(n_1,n_2)}^F(t) 
= 
\frac{1}{B(n_1/2, n_2/2)} 
\Big(\frac{n_1}{n_2} \Big)^{n_1/2} 
\frac{t^{(n_1-2)/2}}{(1+n_1t/n_2)^{(n_1+n_2)/2}} 
\qquad 
(t \ge 0) 
\tag{7.71}  
\end{align} 
 
where, $B(\cdot, \cdot)$ is the Beta function,that is, for $x, y > 0$, 
 
\begin{align} 
B(x, y ) 
= 
\int_0^1 t^{x-1} (1-t)^{y-1} dt 
\end{align} 
 
Note that 
 
\begin{align} 
& 
\mbox{ 
$F$-distribution with 
degree of freedom$(1,n-1)$ 
} 
\\ 
= 
& 
\mbox{ 
Student $t$-distribution 
with 
the 
degree of freedom$(n-1)$} 
\end{align} 
 
 
Define two maps $\overline{\mu}: {\mathbb R}^n \to {\mathbb R}$ and $\overline{SS}: {\mathbb R}^n \to {\mathbb R}$ as follows. 
 
\begin{align} 
& 
\overline{\mu} (x)=\overline{\mu}(x_1, x_2, \cdots, x_n ) = 
\frac{\sum_{k=1}^n x_k }{n} 
\\ 
& 
\overline{SS} (x)=\overline{SS}(x_1, x_2, \cdots, x_n ) = 
{\sum_{k=1}^n (x_k - \overline{\mu} (x))^2 } 
\\ 
& 
\qquad( \forall x = (x_1, x_2, \cdots, x_n ) \in {\mathbb R}^n ) 
\end{align} 
 
Formula 7.7 [Gauss integral(normal distribution and chi-squared distribution)]. This was already mentioned in  (6.6) and (6.7). 
 
 
Formula 7.8 [Gauss integral($F$-distribution )]. For $c \ge 0$, 
 
\begin{align} 
\;\;\;\; \mbox{(A):$\;\;\;$} 
& 
\frac{1}{({{\sqrt{2 \pi }{}}})^n} 
\underset{ 
c 
\le 
\frac{ 
n(\overline{\mu}(x))^2 
}{ 
{\overline{SS}(x)}/({n-1}) 
} 
} 
{\int \cdots \int} 
\exp[{}- \frac{\sum_{k=1}^n ({}{x_k}  {}  )^2  
} 
{2 }    {}] d {}{x_1} d {}{x_2}\cdots dx_n 
= 
\int^{\infty}_{ 
c 
} p_{(1,{{n}}-1) }^F(t) dt 
\tag{7.72} 
\end{align}  
 
$\quad$ (B): For $n=\sum_{i=1}^a n_i$, 
 
\begin{align} 
& 
\frac{1}{({{\sqrt{2 \pi }{}}})^{{{n}}}} 
\underset{ 
\frac{ 
(\sum_{i=1}^a n_i( 
x_{i \bullet} 
- x_{\bullet \bullet} 
)^2 /(a-1)}{ 
(\sum_{i=1}^a \sum_{k=1}^{n_i} (x_{ik} - x_{i \bullet})^2)/({{n}}-a) 
} 
> c 
} 
{\int \cdots \int} 
\exp[{}- \frac{ \sum_{i=1}^a \sum_{k=1}^{n_i}   ({}{x_{ik}}  )^2  
} 
{2 }   {}]  
\times_{i=1}^a \times_{k=1}^{n_i} 
d {}{x_{ik}}  
\nonumber 
\\ 
= 
& 
\int^{\infty}_{c} 
p_{(a-1,{{n}}-a) }^F(t) dt  
\tag{7.73} 
\end{align}  
\begin{align} 
\mbox{(C)} \;\; 
& 
\frac{1} 
{({ 
{\sqrt{2 \pi }} 
})^{abn}} 
\underset{ 
\frac{ 
\frac{ 
\sum_{i=1}^a \sum_{j=1}^b( 
x_{ij \bullet} 
- x_{\bullet \bullet \bullet} 
)^2}{(a-1)} 
}{ 
\frac{ 
\sum_{i=1}^a \sum_{j=1}^b\sum_{k=1}^n (x_{ijk} - x_{ij \bullet})^2 
}{ab(n-1)} 
} 
> 
c 
} 
{\int \cdots \int} 
\exp[-  
\frac{ 
\sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n  (x_{ijk} 
)^2  
}{2 } 
]  
\times_{k=1}^n 
\times_{j=1}^b 
\times_{i=1}^a 
d{x_{ijk} } 
\nonumber 
\\ 
= 
& 
\int^{\infty}_c p_{(a-1,ab(n-1)) }^F(t) dt 
\tag{7.74} 
\end{align}  
 
Or, equivalently 
 
\begin{align}  
\mbox{(D):$\;\;\;$} 
& 
\frac{1} 
{({ 
{\sqrt{2 \pi }} 
})^{abn}} 
\underset{ 
\frac{ 
\frac{ 
\sum_{i=1}^a\sum_{j=1}^b( 
x_{i j \bullet } 
- 
x_{i \bullet \bullet } 
- 
x_{\bullet j \bullet } 
+ 
x_{\bullet \bullet \bullet } 
)^2}{(a-1)(b-1)} 
}{ 
\frac{\sum_{i=1}^a \sum_{j=1}^b\sum_{k=1}^n (x_{ijk} - x_{ij \bullet})^2}{ 
ab(n-1) 
} 
} 
> 
c 
} 
{\int \cdots \int} 
\exp[-  
\frac{ 
\sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n  (x_{ijk}  
)^2  
}{2} 
]  
\times_{k=1}^n 
\times_{j=1}^b 
\times_{i=1}^a 
d{x_{ijk} } 
\nonumber 
\\ 
= 
& 
\int^{\infty}_{c}  
p_{((a-1)(b-1),ab(n-1)) }^F 
(t) dt 
\tag{7.75}  
\end{align}