14.1: Infinite realized causal observable in classical systems
In what follows,
we will generalize the argument
( concerning the finite realized causal observable in Chapter 12)
to infinite case.
In the case of infinite trees,
it is impossible to discuss
quantum system deeply.
thus, in this chapter,
Put $T^2_\le = \{ (t_1,t_2) \in T^2{}: t_1 \le t_2 \}$.
An element $t_0 \in T$ is called a
root
if
$t_0 \le t$ ($\forall t \in T$) holds.
If $T$ has the root
$t_0$,
we sometimes denote
$T$ by
$T(t_0)$.
$T' (\subseteq T )$
is called
lower bounded
if
there exists an element
$t_i (\in T)$
such that
$t_i {{\; \leqq \;}}t $
$(\forall t \in T')$.
Therefore,
if
$T$ has the root,
any $T' (\subseteq T )$
is lower bounded.
We always assume that
$T$ is complete,
that is,
for any
$T' (\subseteq T )$
which is lower bounded,
there exists
an
element
${\rm Inf}_T ( T' ) (\in T )$
that satisfies the following
(i)
and (ii):
As typical examples, it suffices to consider the finite tree $T$ (mentioned in $\S$6) such that
Let $(T,\le)$ be an infinite tree, i.e., an infinite tree like semi-ordered set such that
\begin{align}
\mbox{
"$t_1 {{\; \leqq \;}}t_3$
and
$t_2 {{\; \leqq \;}}t_3$" $\Longrightarrow$
"$t_1 {{\; \leqq \;}}t_2$
or
$t_2 {{\; \leqq \;}}t_1$"
}
\end{align}
(i):
${\rm Inf}_T ( T' ) {{\; \leqq \;}}t \qquad ( \forall t \in T' )$
(ii):
If
$s {{\; \leqq \;}}t \; \; ( \forall t \in T' )$,
then
it holds that
$s {{\; \leqq \;}}{\rm Inf}_T ( T' )$
or, non-negative real numbers $T(0)=\{ t \in {\mathbb R} \;|\; t {\; \geqq \;}0 \}$ or natual numbers $T(1)=\{1,2,\ldots \}$
Let $(T{(t_0)}, {{\; \leqq \;}})$ be an infinite tree with the root $t_0$. For each $t \in T$, consider the classical basic structure:
\begin{align} [C_0(\Omega_t ) \subseteq L^\infty (\Omega_t, \nu_t ) \subseteq B(L^2 (\Omega_t, \nu_t ) ) ] \end{align}Also, for each $t \in T$, define the separable complete metric space $X_t$, and the Borel field $ {\cal B}_{X_t}$, and further, define the observable ${\mathsf O}_t {{=}} (X_t, {\cal F}_t, F_t)$ in ${L^\infty(\Omega_t, \nu_t)}$. That is, we have a sequential causal observable:
\begin{align} [{}{\mathbb O}_{T(t_0)}{}] =[{}\{ {\mathsf O}_t \}_{ t \in T} , \{ \Phi_{t_1,t_2}{}: L^\infty(\Omega_{t_2}, \nu_{t_2}) \to L^\infty(\Omega_{t_1}, \nu_{t_1}) \}_{(t_1,t_2) \in T^2_{\leqq}} ] \end{align}Now let us construct the realized causal observable in what follows:
Here, define,
$\overline{\cal P}_0(T)$
$( =
\overline{\cal P}_0(T(t_0))
\subseteq {\cal P}(T) )$
such that
Let ${T'{(t_0)}} \in \overline{\cal P}_0(T{(t_0)} )$. Since $(T'(t_0), {{\; \leqq \;}})$ is finite, we can put $({T'} {{=}} \{ t_0, t_1,\ldots , t_N \},$ $ \pi{}: {T'} \setminus \{t_0\} \to T')$, where $\pi$ is a parent map.
Finite case: The realization of asequential causal observable is easy as follows:
Let $T' (= T'(t_0) ) \in \overline{\mathcal P}_0(T)$. Consider the sequential causal observable $[{}\{ {\mathsf O}_t \}_{ t \in {T'}} , \{ \Phi_{\pi(t), t }{}: $ $L^\infty(\Omega_t, \nu_t) \to L^\infty(\Omega_{\pi(t)}, \nu_{\pi(t)}) \}_{ t \in {T'} \setminus \{t_0 \} }$ $]$. For each $s$ $(\in {T'})$, putting $T_s =\{ t \in T' \;|\; t {\; \geqq \;}s \}$, define the observable $\widehat{\mathsf O}_s {{=}} (\times_{t \in T_s } X_t, $ $\times_{t \in T_s } {\cal F}_t, {\widehat F}_s)$ in $ L^\infty(\Omega_t, \nu_t) $ such that
\begin{align} \widehat{\mathsf O}_s = \left\{\begin{array}{ll} {\mathsf O}_s \quad & \mbox{($ s \in {T'} \setminus \pi ({T'}) $\; \mbox{ and })} \\ \\ {\mathsf O}_s {\times} ({ \underset{{t \in \pi^{-1} (\{ s \})}}{\times} } \Phi_{ \pi(t), t} \widehat {\mathsf O}_t) \quad & \mbox{($ s \in \pi ({T'}) ${}\; \mbox{ and })} \end{array}\right. \tag{14.2} \end{align}
And further,
iteratively,
we get
$\widehat{\mathsf O}_{t_0}{{=}} (\times_{t \in T' } X_t, $
$\times_{t \in T' } {\cal F}_t, {\widehat F}_{t_0})$,
which is also denoted by
$\widehat{\mathsf O}_{{T'}}{{=}} (\times_{t \in T' } X_t, $
$\times_{t \in T' } {\cal F}_t, {\widehat F}_{T'})$.
$\Big($
In classical cases, the existence is guaranteed by Definition 12.4
$\Big)$
Ininite case:
For any subsets $T_{1} \subseteq T_{2}( \subseteq {{T}})$, define the natural map $ \pi_{T_{1},T_{2}}: \times_{{t} \in T_{2}} X_{{t}} \longrightarrow \times_{{t} \in T_{1}} X_{{t}} $ by
\begin{align} \mathop{\Large{\mbox{ $\times$}}}_{t\in T_{2}}X_{t} \ni (x_t )_{t \in T_2 } \mapsto (x_t )_{t \in T_1} \in \mathop{\Large{\mbox{ $\times$}}}_{t\in T_{1}}X_{t} \tag{14.3} \end{align}
It is clear that the observables
$\bigl\{$
$\widehat{\mathsf O}_{T'}{{=}} (\times_{t \in T' } X_t, $
$\times_{t \in T' } {\cal F}_t, {\widehat F}_{T'})$
$~|~$
${T'}\in{\overline{\cal P}_0}({{T}})$
$\bigr\}$
in
$L^\infty(\Omega_{t_0}, \nu_{t_0})$
satisfy the following
consistency condition
,
that is,
$\bullet$ | for any $T_1, T_2$ ($\in$ ${\overline{\cal P}_0}({ {T}})$) such that $T_1 \subseteq T_2$, it holds that |
Then, by Theorem 4.1[ Kolmogorov extension theorem in measurement theory ], there uniquely exists the observable ${\widehat{\mathsf O}}_{{{T}}}$ ${{=}}$ $\bigl(\mathop{\Large{\mbox{ $\times$}}}_{{t} \in {T}}X_{{t}}, $ $\mathop{\mbox{$\boxtimes$}}_{{t}\in{{T}}} {\cal F}_{{t}},$ ${\widehat F}_{{T}} \bigr)$ in $L^\infty(\Omega_{t_0}, \nu_{t_0})$ such that:
\begin{align} {\widehat F}_{{T}} \bigl( \pi_{{{T'}, T}}^{-1}({\Xi}_{{{T'}}}) \bigr) = {\widehat F}_{{{T'}}} \bigl({\Xi}_{{{T'}}} \bigr) \quad (\forall {\Xi}_{{{T'}}} \in \mathop{\mbox{$\boxtimes$}}_{{t}\in{{T'}}} {\cal F}_{{t}},~ \forall{{T'}}\in{\overline{\cal P}_0}({{T}})) \tag{14.5} \end{align}This observable ${\widehat{\mathsf O}}_{{{T}}}$ ${{=}}$ $(\mathop{\Large{\mbox{ $\times$}}}_{{t} \in {T}}X_{{t}}, $ $\mathop{\mbox{$\boxtimes$}}_{{t}\in{{T}}} {\cal F}_{{t}},$ ${\widehat F}_{{T}} )$ is called the realization of the sequential causal observable $[{}{\mathbb O}_{T(t_0)}{}]$ $=$ $[{}\{ {\mathsf O}_t \}_{ t \in T} , \{ \Phi_{t_1,t_2}{}: $ $L^\infty(\Omega_{t_2}, \nu_{t_2}) $ $\to L^\infty(\Omega_{t_1}, \nu_{t_1}) \}_{(t_1,t_2) \in T^2_{\leqq}}$ $]$.
Summing up the above argument, we have the following theorem in classical systems. This is the infinite version of Definition 12.4.
Theorem 14.2 [The existence theorem of an infinite realized causal observable in classical systems]
Let $T$ be an infinite tree with the root $t_0$. For each $t \in T$, consider the basic structure:
\begin{align} [C_0(\Omega_t ) \subseteq L^\infty (\Omega_t ,\nu_t ) \subseteq B( L^2 (\Omega_t ,\nu_t ) )] \end{align}Also, for each ${t}\in{{T}}$, define the separable complete metric space $X_{t}$, the Borel field $(X_{t} , {\cal F}_{{t}})$ and an observable ${\mathsf O}_t {{=}} (X_t, {\cal F}_t, F_t)$ in $L^\infty (\Omega_t ,\nu_t ) $. And, consider the sequential causal observable$[{}{\mathsf O}_{T(t_0)}{}]$ $=$ $[{}\{ {\mathsf O}_t \}_{ t \in T} , \{ \Phi_{t_1,t_2}{}: $ $ L^\infty (\Omega_{t_2} ,\nu_{t_2} ) \to L^\infty (\Omega_{t_1} ,\nu_{t_1} ) \}_{(t_1,t_2) \in T^2_{\leqq}}$ $]$. Then, there uniquely exists the realized causal observable ${\widehat{\mathsf O}}_{{{T}}}$ ${{=}}$ $\bigl(\times_{{t} \in {T}}X_{{t}}, $ $\boxtimes_{{t}\in{{T}}} {\cal F}_{{t}},$ ${\widehat F}_{{T}} \bigr)$ in $L^\infty (\Omega_{t_0} ,\nu_{t_0} )$, that is, it satisfies that
\begin{align} {\widehat F}_{{T}} \bigl( \pi_{{{T'}, T}}^{-1}({\Xi}_{{{T'}}}) \bigr) = {\widehat F}_{{{T'}}} \bigl({\Xi}_{{{T'}}} \bigr) \quad (\forall {\Xi}_{{{T'}}} \in \boxtimes_{{t}\in{{T'}}} {\cal F}_{{t}},~ \forall{{T'}}\in{\overline{\cal P}_0}({{T}})) \tag{14.6} \end{align}